Automated Road Safety Analysis Using Video Sensors

Nicolas Saunier and Tarek Sayed Department of Civil Engineering, UBC

saunier@civil.ubc.ca

Outline

- Introduction
 - traffic safety analysis,
 - traffic conflicts,
 - video sensors,
 - vehicle tracking.
- Traffic conflict detection
 - semi-supervised learning.
- Future work.

1. Motivation

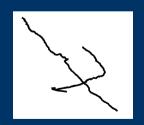
- Traditional road safety is a reactive approach, based on historical collision data.
- Pro-active approach: "Don't wait for accidents to happen".
- Need for surrogate safety measures that
 - bring complementary information,
 - that can be easily collected,
 - are based on more frequent events,
 - are still related to safety (accidents).
- Traffic conflicts (near-misses).

1. Video Sensors

- Main bottleneck of traffic conflict techniques
 - collection cost,
 - reliability and subjectivity of human observers.
- Advantages of video sensors
 - they are easy to install,
 - they can provide rich traffic description (vehicle tracking),
 - they can cover large areas,
 - they are cheap sensors.
- Computer vision is required to interpret video data.

1. Modular System

Vehicle
Detection and
Tracking



Implement a complete system

1. Vehicle Tracking

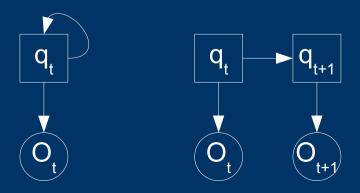
- Feature-based tracking is the most readily available method
 - KLT implementation (Stan Birchfield's or Intel OpenCV Library).
- Extension of the feature-based tracking algorithm by Beymer et al. (1997) to intersections.
- Poster at the Third Canadian Conference on Computer and Robot Vision 2006.

2. Detecting Traffic Conflicts

- Input: vehicle trajectories (x₁, y₁, ..., x_n, y_n).
- Output: traffic conflicts, or selected short sequences containing the traffic conflicts.
- Traffic conflicts are rare events. Data is limited for training and test.

2. Traffic Conflict Detection

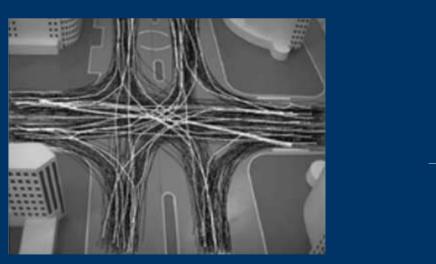
- Direct extrapolation method is difficult because of imperfect tracking data.
- Learning is more generic
 - learning and prediction of vehicle movements,
 - interaction classification.
- Probabilistic models for sequential data: HMMs, DBNs.

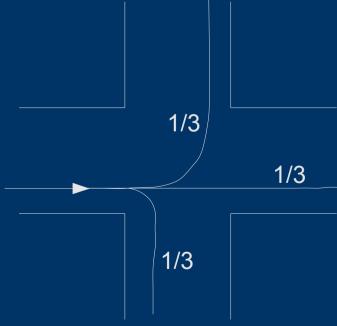


prior probabilities, transition probabilities, output distributions.

2. Trajectories Learning

- Learning motion patterns for movement prediction (unsupervised).
- Movement prediction and traffic conflict detection.





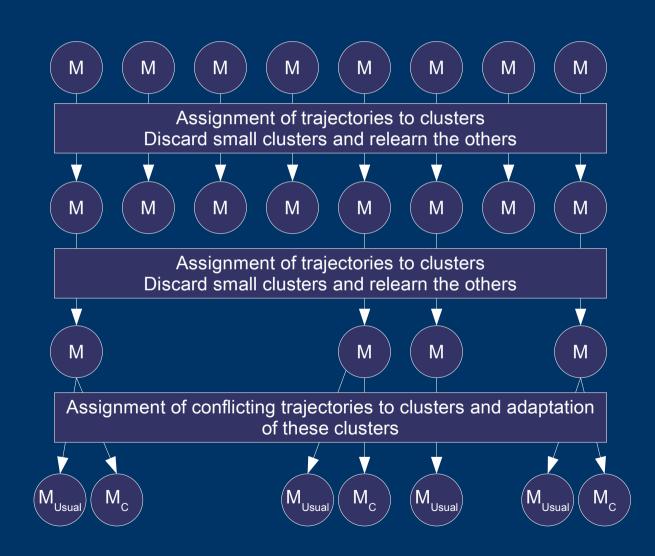
2. Sequential Data Clustering

- Sequence similarity: distance over sequences.
 - ex: edit distance.
- Extract a set of features for each sequences, for use with traditional fixed length vectorbased clustering methods.
 - ex: leading Fourier coefficients.
- Statistical sequence clustering: sequences are similar if they have a common similarity to a model, computed by the likelihood P(Observation|Model).

2. Semi-Supervised Learning

- HMM-based clustering of vehicle trajectories
 - k-means approach,
 - discard small clusters.
- Adaptation of HMMs to trajectories involved in few actual traffic conflicts.
- Detection: pairs of conflicting clusters.

2. Algorithm Figure



M_{Usual}

Model of usual events

Model of traffic conflicts

3. Experimental Results

- 10 video sequences used for the training of traffic conflict observers (1980s),
- 560 trajectories in 8 sequences used for learning,
- only 5 traffic conflicts.

3. Detection Results

 HMM-based clustering is very sensitive to initialization.

α	CD	Uncertain TC	FA
"0"	10	17	38
0.05	10	13	6
0.10	10	13	10
0.15	10	12	6
0.20	10	3	3
0.25	10	5	2
0.30	10	5	2
0.35	10	4	1
0.40	10	4	0
0.45	10	4	0
0.50	10	3	0

Conclusion and Future Work

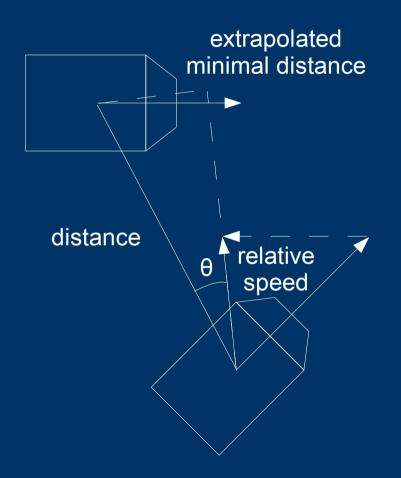
- Traffic conflict detection is feasible.
- Computational improvements (Intel OpenCV library).
- Collecting more data
 - other sources,
 - artificial data,
 - interactive labeling, active learning.
- Collision probability computation.

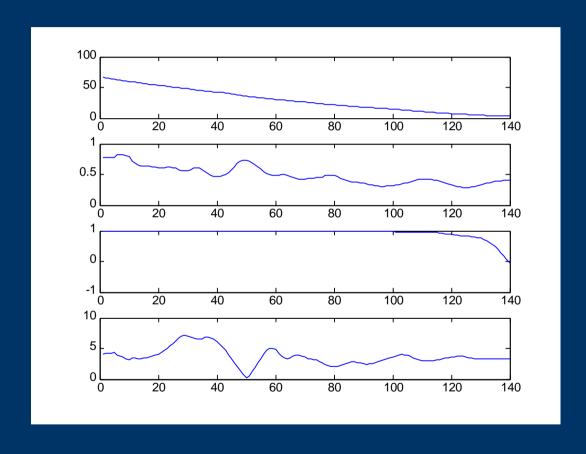
Thank you!

Annex: Interaction Classification

- Binary classification: conflicts / non-conflict interactions.
- For a more generic system, relevant features for an interaction should
 - be symmetric with respect to the vehicles,
 - describe the relative vehicle movements.

Interaction Features





HMM Ensemble

- Traditional HMM-based classification: 1 HMM per class.
- Very imbalanced dataset: improve performance by monitoring results per class.
- Train an ensemble of HMMs on misclassified instances:
 - until a given accuracy is reached, add new HMMs trained on the sets of misclassified instances of each class.

Interaction Classification

- 10 runs of leave-one-out:
 - HMM ensemble / 2-HMMs base classifier.

Predicted	Conflicts	Non-conflict Interactions
Conflicts	0.1	7.4
Non-conflict Interactions	5.9	348.6
Conflicts	1.3	62.9
Non-conflict Interactions	4.7	293.1