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Outline

● Introduction 
– traffic safety analysis, 
– traffic conflicts, 
– video sensors, 
– vehicle tracking.

● Traffic conflict detection
– semi-supervised learning.

● Future work.



1. Motivation

● Traditional road safety is a reactive approach, 
based on historical collision data.

● Pro-active approach: "Don't wait for accidents 
to happen".

● Need for surrogate safety measures that
– bring complementary information, 
– that can be easily collected,
– are based on more frequent events, 
– are still related to safety (accidents).

● Traffic conflicts (near-misses).



1. Video Sensors

● Main bottleneck of traffic conflict techniques
– collection cost,
– reliability and subjectivity of human observers.

● Advantages of video sensors
– they are easy to install,
– they can provide rich traffic description (vehicle 

tracking), 
– they can cover large areas,
– they are cheap sensors.

● Computer vision is required to interpret video 
data. 
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1. Vehicle Tracking

● Feature-based tracking is the most readily 
available method
– KLT implementation (Stan Birchfield's or Intel 

OpenCV Library).
● Extension of the feature-based tracking 

algorithm by Beymer et al. (1997) to 
intersections. 

● Poster at the Third Canadian Conference on 
Computer and Robot Vision 2006. 



2. Detecting Traffic Conflicts

● Input: vehicle trajectories (x
1
, y

1
, ..., x

n
, y

n
). 

● Output: traffic conflicts, or selected short 
sequences containing the traffic conflicts. 

● Traffic conflicts are rare events. Data is limited 
for training and test. 



2. Traffic Conflict Detection

● Direct extrapolation method is difficult 
because of imperfect tracking data. 

● Learning is more generic
– learning and prediction of vehicle movements,
– interaction classification.

● Probabilistic models for sequential data: 
HMMs, DBNs.
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2. Trajectories Learning

● Learning motion patterns for movement 
prediction (unsupervised).

● Movement prediction and traffic conflict 
detection. 
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2. Sequential Data Clustering

● Sequence similarity: distance over sequences.
– ex: edit distance.

● Extract a set of features for each sequences, 
for use with traditional fixed length vector-
based clustering methods.
– ex: leading Fourier coefficients.

● Statistical sequence clustering: sequences are 
similar if they have a common similarity to a 
model, computed by the likelihood 
P(Observation|Model).



2. Semi-Supervised Learning

● HMM-based clustering of vehicle trajectories
– k-means approach,
– discard small clusters.

● Adaptation of HMMs to trajectories involved in 
few actual traffic conflicts.

● Detection: pairs of conflicting clusters.  



2. Algorithm Figure
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3. Experimental Results

● 10 video sequences used for the training of 
traffic conflict observers (1980s),

● 560 trajectories in 8 sequences used for 
learning,

● only 5 traffic conflicts.



3. Detection Results

● HMM-based 
clustering is very 
sensitive to 
initialization.



Conclusion and Future Work

● Traffic conflict detection is feasible. 
● Computational improvements (Intel OpenCV 

library).
● Collecting more data

– other sources,
– artificial data,
– interactive labeling, active learning.

● Collision probability computation.



Thank you !



Annex: Interaction Classification

● Binary classification: conflicts / non-conflict 
interactions.

● For a more generic system, relevant features 
for an interaction should
– be symmetric with respect to the vehicles,
– describe the relative vehicle movements.



Interaction Features
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HMM Ensemble

● Traditional HMM-based classification: 1 HMM 
per class.

● Very imbalanced dataset: improve 
performance by monitoring results per class. 

● Train an ensemble of HMMs on misclassified 
instances:
– until a given accuracy is reached, add new HMMs 

trained on the sets of misclassified instances of 
each class. 



Interaction Classification

● 10 runs of leave-one-out:
– HMM ensemble / 2-HMMs base classifier.


