Automated Road Safety Analysis Using Video Data

Nicolas Saunier

Department of Civil Engineering, University of British Columbia

saunier@civil.ubc.ca http://www.confins.net/saunier/

Outline

- 1.Introduction
- 2. Vehicle Detection and Tracking
- 3. Traffic Conflict Detection
- 4. Future Work

1. Motivation

- Traditional road safety is a reactive approach, based on historical collision data.
- Pro-active approach: "Don't wait for accidents to happen".
- Need for surrogate safety measures that
 - bring complementary information,
 - that can be easily collected,
 - are based on more frequent events,
 - are still related to safety (accidents).
- Traffic conflicts (near-misses).

1. Video Sensors

- Main bottlenecks of traffic conflict techniques
 - collection cost,
 - reliability and subjectivity of human observers.
- Advantages of video sensors
 - they are easy to install,
 - they can provide rich traffic description (e.g. vehicle tracking),
 - they can cover large areas,
 - they are cheap sensors.
- Computer vision is required to interpret video data.

1. Computer Vision

- Subfield of Artificial Intelligence.
- The purpose is to program a computer to "understand" a scene or features in an image or a sequence of images.
- Some computer vision systems:
 - optical character recognition, event detection (video surveillance), image database indexing and querying, tracking, object modeling (medical image analysis), human-computer interfaces...

1. Pattern Recognition and Machine Learning

- Required for higher level interpretation.
- Supervised learning: the algorithm learns a function (classifier) that maps input to outputs, given labeled training examples.
- Unsupervised learning: the algorithm models a set of inputs.

1. Modular System

Implement a complete system

2. Vehicle Detection and Tracking

- 4 categories of methods:
 - Model-based tracking (often using 3D models),
 - Blob-based tracking (often using background/foreground segmentation),
 - Contour-based tracking,
 - Feature-based tracking.
- Feature-based tracking was chosen since
 - it is the most readily available method (Kanade Lucas Tomasi implementation in Stan Birchfield's or Intel OpenCV Library),
 - it is robust to partial occlusion, variable lighting conditions, and requires no special initialization.

2. Feature-based Tracking

 Extension of the feature-based tracking algorithm by Beymer et al. (1997) to intersections (CRV 06):

Demo

 Accuracy between 84.7 % and 94.4 % on 3 sets of sequences.

3. Detecting Traffic Conflicts

Input

vehicle trajectories (x₁, y₁, ..., x_n, y_n), and velocities (vx₁, vy₁, ..., vx_n, vy_n).

Output

- actual traffic conflicts,
- selected short sequences containing the traffic conflicts for further human review.

3. Traffic Conflicts Description

- Traffic conflicts are rare events. Data is limited for training and test.
- Characteristics:
 - collision course (extrapolation hypotheses),
 - evasive action,
 - actual spatiotemporal proximity.
- Detection should be based on these characteristics:
 - simple manual rules,
 - classifiers learnt on traffic conflict examples.

3. Collision Course Estimation

- Extrapolation hypotheses for motion prediction:
 - default: constant speed and direction,
 - learn (automatically) additional knowledge from the observation of traffic data: typical motion patterns.
- Motion patterns can be stored as trajectories or more complicated models, such as probabilistic models for sequential data (DBNs, HMMs).

Defined by

- prior probabilities,
- transition probabilities,

- output distributions.

3. Learning Motion Patterns and Sequential Data Clustering

- Sequence similarity / distance.
 - ex: Euclidean distance, edit distance, DTW, LCSS.
- Extract a set of features for each sequences, for use with traditional fixed length vectorbased clustering methods.
 - ex: leading Fourier coefficients.
- Statistical sequence clustering: sequences are similar if they have a common similarity to a model, computed by the likelihood P(Observation Model).

3.1. First Approach

HMM-based clustering of trajectories

- iterative K-means approach,
- discard small clusters.

train each
HMM on its
assigned
trajectories

assign trajectories to HMMs

3.1. Semi-Supervised Learning

- An extra training step uses some available traffic conflict instances
 - to adapt HMMs (means and covariances of the Gaussian output distributions),
 - to memorize "conflicting" models.
- Detection process
 - interacting vehicles (close and nearing each other) are detected,
 - the 2 trajectories are assigned to models,
 - if the models were memorized as conflicting, a traffic conflict is detected.

3.1. Experimental Results

- 10 video sequences used for the training of traffic conflict observers (1980s),
- 560 trajectories in 8 sequences used for learning,

only 5 traffic conflicts.

3.1. Example of Trajectories Clustering

3.1. Detection Results

α	CD	Uncertain TC	FA
"0"	10	17	38
0.05	10	13	6
0.10	10	13	10
0.15	10	12	6
0.20	10	3	3
0.25	10	5	2
0.30	10	5	2
0.35	10	4	1
0.40	10	4	0
0.45	10	4	0
0.50	10	3	0

- HMM-based clustering is very sensitive to initialization.
- Continuum of traffic events.

Demo

3.2. Learning Prototype Trajectories

- Keep actual trajectories as prototypes for motion patterns.
- Use Longest Common Subsequence Similarity (LCSS):

Let $Head(T_i)$ be the sequence $\{t_{i,1},...t_{i,n-1}\}$. Given a real number $0 < \epsilon < 1$, the LCSS similarity of two trajectories T_i and T_j of respective lengths m and n is defined as

$$LCSS_{\epsilon}(T_i, T_j) = \begin{cases} 0 & \textit{if } m = 0 \\ 0 & \textit{if } n = 0 \\ 1 + LCSS_{\epsilon}(Head(T_i), Head(T_j)) & \textit{if } \text{the points match} \\ max(LCSS_{\epsilon}(Head(T_i), T_j), LCSS_{\epsilon}(T_i, Head(T_j))) & \textit{otherwise} \end{cases}$$

Two points t_{i,k_1} and t_{j,k_2} match if $|x_{i,k_1}-x_{j,k_2}|<\epsilon$ and $|y_{i,k_1}-y_{j,k_2}|<\epsilon$.

Online learning of prototypes.

3.2. Collision Probability

1/3
1/3
1/3

 Prototype trajectories are used for collision probability estimation:

$$\sum_{i,j} P(T_i|A)P(T_j|B) e^{-\frac{t^2}{2\sigma^2}}$$

where t is the predicted time of the potential collision if A follows trajectory T_i and B follows trajectory T_i .

- This is an additional indicator for traffic conflict detection.
- Other uses include detailed exposure measurements unavailable to this day.

3.2. Experimental Data

Demo

4. Conclusion and Future Work

- Traffic conflict detection is feasible.
- Collecting more data:
 - other sources,
 - artificial data,
 - interactive labeling, active learning.
- Traffic Intelligence: automatically collect traffic data for traffic diagnosis and management.

Thank you!

Sequence of Indicators

Vehicle Trajectories

Interaction characteristics: distance, relative velocity, Time To Collision, collision probability...

 $a_{1}(t)$ $a_{2}(t)$ $a_{3}(t)$...

Detection Method: manually-tuned rules, classifiers learnt on examples...

Annex. Algorithm Figure

M_{Usual} Modusual

Model of usual events

M_c Model of traffic conflicts

3. Influence of the Number of Models

