Surrogate Measures of Safety, 18 Years On

Hasselt University

Nicolas Saunier May 28th 2019

Motivation

Methodology

Case Studies

Conclusion

Outline

Motivation

Methodology

Automated Video Analysis Road User Behaviour and Safety Analysis Case Studies Cyclist Safety Pedestrian Safety at Crossings Surrogate Measures of Safety from Probe

Conclusion

• The total number of road fatalities and injuries in Canada has been decreasing over the last 20 years

- The total number of road fatalities and injuries in Canada has been decreasing over the last 20 years
- Vision Zero was introduced in 2015 by the Canadian injury prevention charity Parachute, and has been adopted by Edmonton, Vancouver, Toronto, Ottawa and Montreal

- The total number of road fatalities and injuries in Canada has been decreasing over the last 20 years
- Vision Zero was introduced in 2015 by the Canadian injury prevention charity Parachute, and has been adopted by Edmonton, Vancouver, Toronto, Ottawa and Montreal
- Yet safety has not improved as much for vulnerable road users (VRU) (pedestrians and cyclists) and has been worsening since 2016

Odd Strain of Victim Blaming in North America

Distracted walking is just as dangerous as distracted driving. Enjoy the weather safely and look before you cross.

Follow

 \sim

9:01 AM - 9 May 2018

29 Retweet	s 53 Likes	🌚 🐢 -	🚫 🏐 🦪 🧶 🏀 🌺
♀ 220	tl 29	♡ 53	

There are two main categories of methods, whether they are based on direct observation or not

- 1. Accidents are reconstituted
 - traditional road safety analysis relying on historical collision data
 - vehicular accident reconstruction

There are two main categories of methods, whether they are based on direct observation or not

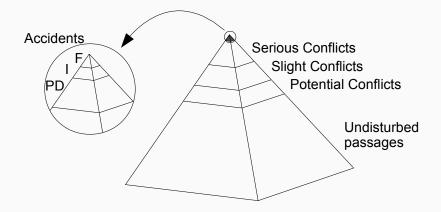
- 1. Accidents are reconstituted
 - traditional road safety analysis relying on historical collision data
 - vehicular accident reconstruction
- 2. Road user behavior, interactions and accidents are directly observed
 - behavioural observations and surrogate measures of safety (SMoS)
 - data source: naturalistic (driving) studies, probe vehicles, site analysis
 - manual to automated

1. Difficult attribution of collisions to a cause

- 1. Difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision

- 1. Difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. Small data quantity

- 1. Difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. Small data quantity
- 3. Limited quality of the data reconstituted after the event, with a bias towards more damaging collisions


- 1. Difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. Small data quantity
- 3. Limited quality of the data reconstituted after the event, with a bias towards more damaging collisions
- 4. Traditional road safety analysis is reactive

- 1. Difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. Small data quantity
- 3. Limited quality of the data reconstituted after the event, with a bias towards more damaging collisions
- 4. Traditional road safety analysis is reactive
 - the following paradox ensues: safety analysts need to wait for accidents to happen in order to prevent them

Need for Proactive Methods for Road Safety Analysis

Because of the shortcomings of the traditional approaches, there is a need for methods that do not require to wait for accidents to happen

Foundation: The Safety/Severity Hierarchy

Outline

Motivation

Methodology

Automated Video Analysis Road User Behaviour and Safety Analysis

Case Studies

Cyclist Safety

Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

Conclusion

Outline

Motivation

Methodology

Automated Video Analysis

Road User Behaviour and Safety Analysis

Case Studies

Cyclist Safety

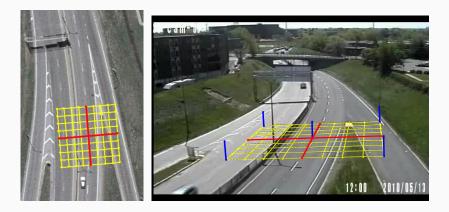
Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

Conclusion

- 1. Video data collection
- 2. Data preparation
- 3. Road user detection, tracking and classification

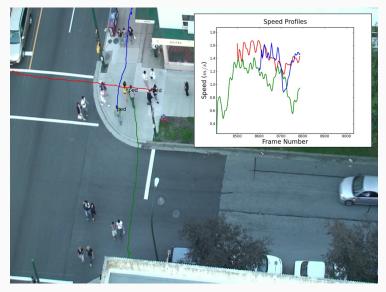
Step 1: Video Data Collection

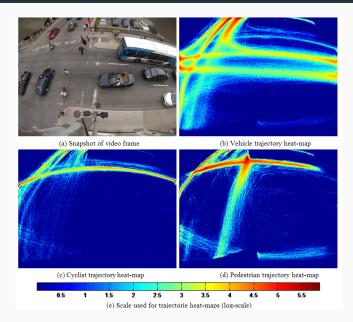


[Jackson et al., 2013]

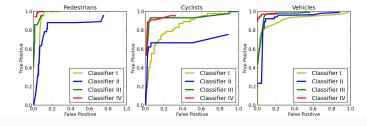
Step 1: Video Data Collection

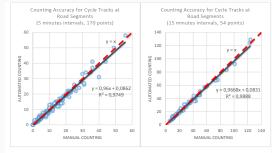
	SAMPLE	CAMERA VIEWS UNDER	DIFFERENT	LIGHTING CONDITIONS	
Daytime Conditions	Thermal Camera	Regular Camera	Nighttime Conditions	Thermal Camera	Regular Camera
Overcast			High visibility	*	A CARE
Sun, no shadows		3 L .	Medium visibility	A BU	
Sun, strong shadows			Low visibility		


In particular, camera calibration: homography, distortion, etc.



In particular, camera calibration: homography, distortion, etc.

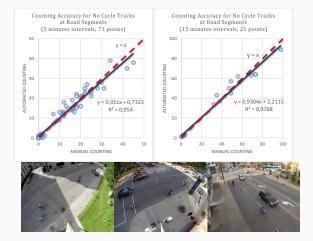




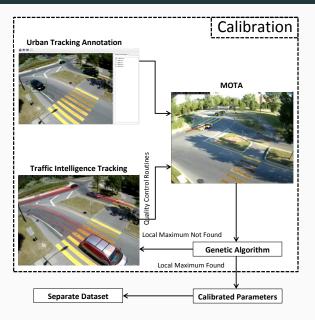
15

ROC Curves

Validating Cyclist Counts in Mixed Traffic


(a)

(b)



Validating Cyclist Counts in Mixed Traffic

Step 3': Optimization of Tracking parameters

Step 3': Optimization of Tracking parameters

		Parameters optimized for					
Site	Default	S1S	S1W	S2	S3V1	S3V2	
S1S	0.719046	0.904502	0.820976	0.817581	0.841254	0.823145	
S1W	0.041073	0.114581	0.709927	0.077883	0.044429	0.050852	
S2	0.703178	0.74025	0.622532	0.766731	0.745787	0.718321	
S3V1	0.759758	0.797088	0.778268	0.793216	0.817457	0.799231	
S3V2	0.750416	0.704989	0.737339	0.776115	0.700151	0.788521	
		Parameters optimized for					
			Parame	ters optimi	zed for		
Site	Default	\$1\$	S1W	ters optimi S2	s3V1	S3V2	
Site S1S	Default 0.719046		S1W	S2			
	=		S1W 0.820976	S2 0.817581	S3V1	0.823145	
S1S	0.719046	0.904502 0.114581	S1W 0.820976 0.709927	S2 0.817581 0.077883	S3V1 0.841254	0.823145	
S1S S1W	0.719046 0.041073	0.904502 0.114581 0.74025	S1W 0.820976 0.709927 0.622532	S2 0.817581 0.077883 0.766731	S3V1 0.841254 0.044429	0.823145 0.050852 0.718321	

Outline

Motivation

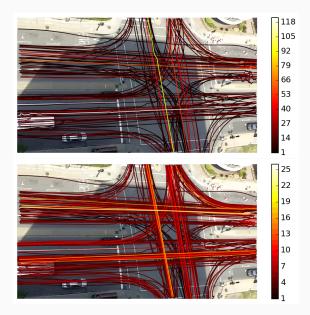
Methodology

Automated Video Analysis

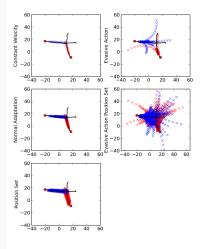
Road User Behaviour and Safety Analysis

Case Studies

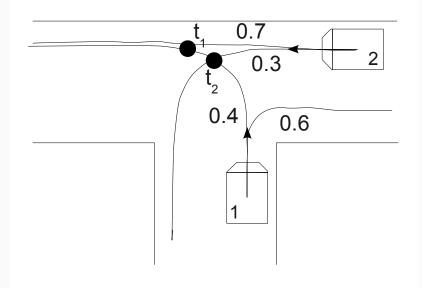
Cyclist Safety


Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

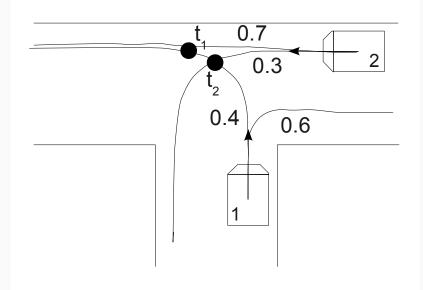

Conclusion

- 4. Motion pattern learning
- 5. Motion prediction
- 6. Safety indicators
- 7. Interpretation


Step 4: Motion Pattern Learning

Step 5: Motion Prediction

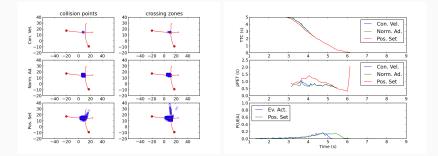
A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"

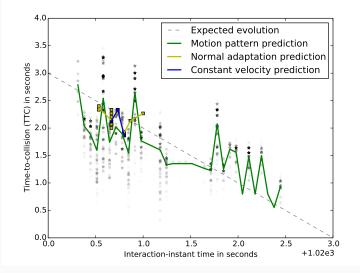

Step 6: Safety Indicators

Continuous measures

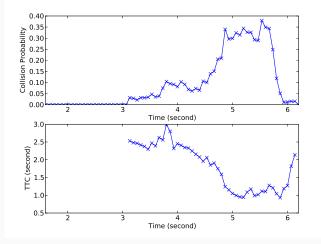
- Time-to-collision (TTC)
- Gap time (GT) (=predicted PET)
- Deceleration-based indicators, e.g. deceleration to safety time (DST)
- Speed-based indicators, (extended) Delta-V, etc.
- Unique measure per conflict
 - Post-encroachment time (PET)
 - Evasive action(s) (harshness), subjective judgment, etc.
- Number of traffic events, e.g. (serious) traffic conflicts

- Continuous measures (* based on motion prediction methods)
 - Time-to-collision (TTC) *
 - Gap time (GT) (=predicted PET) *
 - Deceleration-based indicators, e.g. deceleration to safety time (DST) *
 - Speed-based indicators, (extended) Delta-V, etc.
- Unique measure per conflict
 - Post-encroachment time (PET)
 - Evasive action(s) (harshness), subjective judgment, etc.
- Number of traffic events, e.g. (serious) traffic conflicts


Step 6: Safety Indicators


Using of a finite set of predicted trajectories, enumerate the collision points CP_n and the crossing zones CZ_m . Safety indicators can then be computed:

$$P(Collision(U_i, U_j)) = \sum_{n} P(Collision(CP_n))$$
$$TTC(U_i, U_j, t_0) = \frac{\sum_{n} P(Collision(CP_n)) t_n}{P(Collision(U_i, U_j))}$$
$$pPET(U_i, U_j, t_0) = \frac{\sum_{m} P(Reaching(CZ_m)) |t_{i,m} - t_{j,m}|}{\sum_{m} P(Reaching(CZ_m))}$$


Step 6: Safety Indicators


Step 6: Safety Indicators

For each interaction, we have

How should data be aggregated?

Should data be aggregated (to count severe events)?

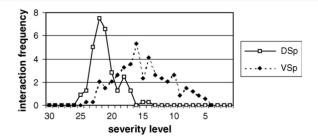
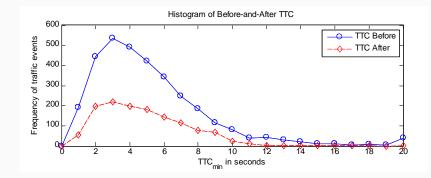
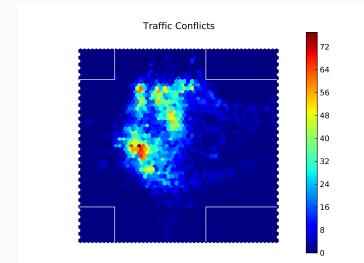
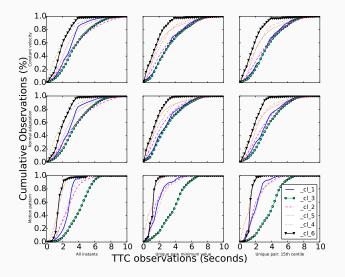
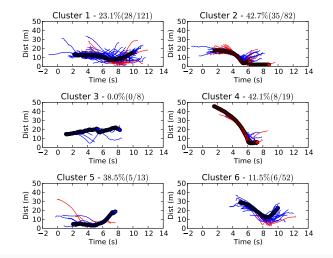
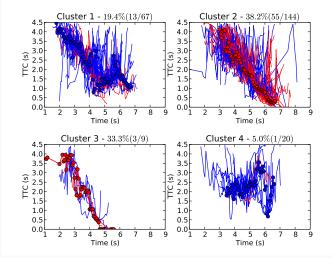





Fig. 6. Interaction frequency (interactions per observation hour) for different severity levels. Straight ahead driving vehicles versus pedestrians. The pedestrian is taking evasive action. A non-signalised intersection (DSp) and a signalised intersection (VSp).





23

	Model I. Cycle track on the right vs. no cycle track		Model II. Cycle track on the left vs. no cycle track			Model III. Cycle track on the right vs. cycle track on the left			
	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.
Cycle Track on Right	0.395	0.181	0.03	-	-	-	-	-	-
Cycle Track on Left	-	-	-	No	t Significa	nt	-0.513	0.131	0.00
Bicycle Flow for 5s before to 5s after	N	ot Significa	nt	0.088	0.038	0.02	0.066	0.034	0.05
Turning-Vehicle Flow for 5s before to 5s after	-2.771	0.132	0.00	-3.265	0.090	0.00	-3.131	0.080	0.00
Number of Lanes on the Main Road	-0.151	0.078	0.05	No	t Significa	nt	Ν	ot Significa	nt
Number of Lanes on the Turning Road	N	ot Significa	nt	0.324	0.146	0.03	0.457	0.178	0.01
Cut-off 1	-6.599	0.353	0.00	-7.372	0.301	0.00	-7.621	0.323	0.00
Cut-off 2	-4.233	0.273	0.00	-3.807	0.223	0.00	-4.125	0.265	0.00
Cut-off 3	-3.150	0.256	0.00	-2.102	0.211	0.00	-2.479	0.258	0.00
Number of Observations		2880			4803			6567	
Log likelihood		-804			-1876			-2330	

Outline

Methodology Automated Video Analysis Road User Behaviour and Safety Analysi Case Studies Cyclist Safety

Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

Conclusion

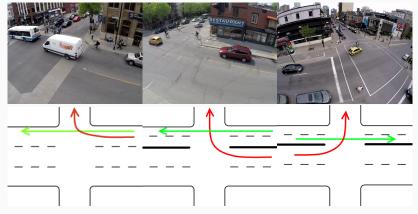
Outline

Motivation

Methodology

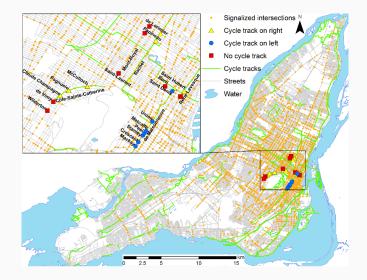
Automated Video Analysis Road User Behaviour and Safety Analysis

Case Studies


Cyclist Safety

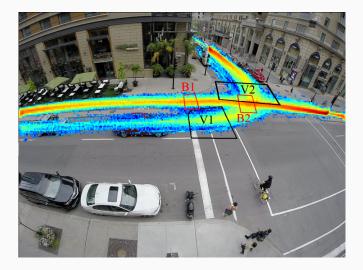
Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles


Conclusion

Turning Vehicle Interactions with Cycle Tracks

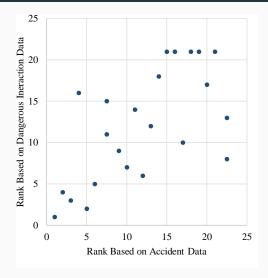
Video


Site Selection

	# intersections	Duration
Cycle track on the right	8 intersections	37 h
Cycle track on the left	7 intersections	22 h
No cycle track	8 intersections	31 h
Total	23 intersections	90 h

Videos were collected on weekdays during the evening peak period from 3pm to 7pm

Road User Selection


Interaction Attributes

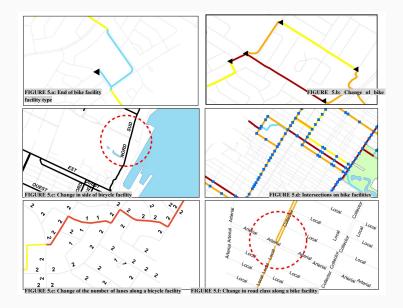
- Each cyclist arriving to the intersection is an observation
- PET is the dependent variable and is discretized into 4 categories
 - $PET \le 1.5 s$: dangerous interaction
 - 1.5 $s < PET \le$ 3 s: mild interaction
 - 3 *s* < *PET* ≤ 5 *s*: interaction
 - PET > 5 s: no interaction
- Tested independent variables
 - Cycle track on the right side
 - Cycle track on the left side
 - Number of lanes on the road
 - Presence of bus stops at the intersection
 - One way street
 - Turning-vehicle and cyclist flows per hour
 - Bicycle and vehicle flow 5, 15 and 30 s before and after the arrival of each cyclist

Three PET Ordered Logit Models

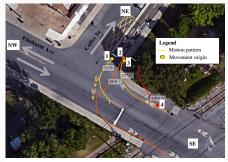
	Model I. Cycle track on the right vs. no cycle track		Model II. Cycle track on the left vs. no cycle track			Model III. Cycle track on the right vs. cycle track on the left			
	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.
Cycle Track on Right	0.395	0.181	0.03	-	-	-	-	-	-
Cycle Track on Left	-	-	-	No	t Significar	nt	-0.513	0.131	0.00
Bicycle Flow for 5s before to 5s after	N	ot Significa	nt	0.088	0.038	0.02	0.066	0.034	0.05
Turning-Vehicle Flow for 5s before to 5s after	-2.771	0.132	0.00	-3.265	0.090	0.00	-3.131	0.080	0.00
Number of Lanes on the Main Road	-0.151	0.078	0.05	No	t Significar	nt	N	ot Significa	nt
Number of Lanes on the Turning Road	N	ot Significa	nt	0.324	0.146	0.03	0.457	0.178	0.01
Cut-off 1	-6.599	0.353	0.00	-7.372	0.301	0.00	-7.621	0.323	0.00
Cut-off 2	-4.233	0.273	0.00	-3.807	0.223	0.00	-4.125	0.265	0.00
Cut-off 3	-3.150	0.256	0.00	-2.102	0.211	0.00	-2.479	0.258	0.00
Number of Observations		2880			4803			6567	
Log likelihood		-804			-1876			-2330	

Correlation with Accidents

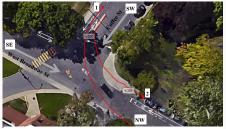
Spearman Rank Correlation of 0.64


Association of Gender with Interaction Safety

		βı			β2			
		,	$\phi^* = \beta_1 X + \beta_2 w$	$X + \beta w + \varepsilon$				
Explanatory variables	Parameter	z stat	p value	Parameter	z stat	p value		
Bike Speed	-	-	-	0.0272	2.31	0.021		
Helmet	-	-	-	-	-	-		
Vehicle Speed	-	-	-	0.0250	2.38	0.017		
Truck/Van	-	-	-	-	-	-		
Platoon Leader	-	-	-	0.2395	1.63	0.104		
Red	-0.7713	-4.99	0.000	-	-	-		
Bike First	-	-	-	-	-	-		
Pedestrian	-	-	-	-	-	-		
Stanley	-0.3774	-2.56	0.010	-	-	-		
Peel	-	-	-	-	-	-		
Mackay	-	-	-	-0.4946	-2.41	0.016		
Metcalfe	-0.2384	-1.75	0.080	-	-	-		
Denis	-	-	-	-	-	-		
Union	-0.8953	-2.21	0.027	0.6657	1.35	0.178		
		βз			β3			
Male	-1.1703	-3.79	0.000	-1.1703	-3.79	0.000		
Tau 1	-0.2007							
Tau 2	1.0455							
Number of cases	1514							
Log likelihood at convergence	-1488.69							
Log likelihood for constants- only model	-1522.09							
Pseudo R ²	0.0219							


Association of Gender with Interaction Safety

	Female	Male
Explanatory variables	βı	$\beta_1 + \beta_2$
Bike Speed	-	0.0272
Helmet	-	-
Vehicle Speed	-	0.0250
Truck/Van	-	-
Platoon Leader	-	0.2395
Red	-0.7713	-0.7713
Bike First	-	-
Pedestrian	-	-
Stanley	-0.3774	-0.3774
Peel	-	-
Mackay	-	-0.4946
Metcalfe	-0.2384	-0.2384
St Denis	-	-
Union	-0.8953	-0.2296
Male	-1.1703	-1.1703

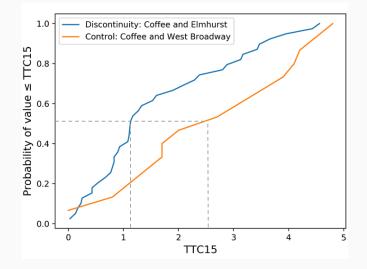

Cycling Network Discontinuities

Cycling Behaviour at Discontinuities

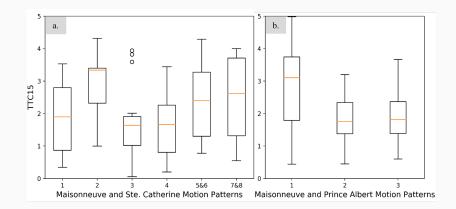
a. Coffee St and Elmhurst Ave (discontinuity)

b. Coffee St and West Broadway St (control) Figure 2 Cyclist motion patterns (represented by their prototype trajectories) for the change in evcling facility true discontinuity

Cycling Behaviour at Discontinuities



a. Maisonneuve Blvd and Sainte-Catherine St (discontinuity)



b. Maisonneuve Blvd west and Prince Albert Ave (control) Figure 3 Cyclist motion patterns (represented by their prototype trajectories) for the change in cycling facility side discontinuity

Cycling Safety at Discontinuities

Cycling Safety per Motion Pattern

Outline

Motivation

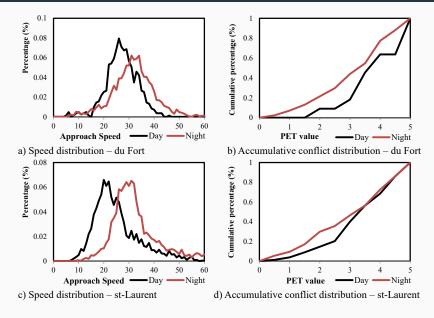
Methodology

Automated Video Analysis Road User Behaviour and Safety Analysis

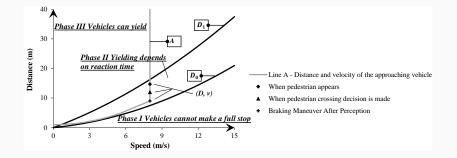
Case Studies

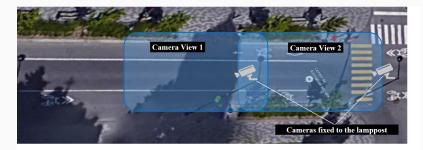
Cyclist Safety

Pedestrian Safety at Crossings


Surrogate Measures of Safety from Probe Vehicles

Conclusion

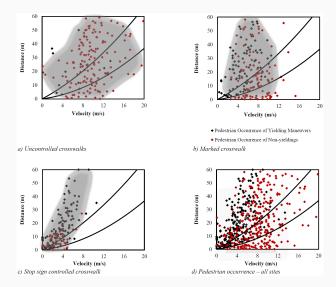

Safety of Pedestrian Crossings at Night


Safety of Pedestrian Crossings at Night

Behavioural Indicators: Distance-Velocity Framework

Behavioural Indicators: Distance-Velocity Framework

a) Camera locations and installations on the aerial map


b) Trajectories of the same vehicle through multiple cameras (displayed on the video frames after the correction for lens

Application to 15 sites

Type of Crosswalk	Type A Uncontrolled	Type B Marked	Type C Stop sign controlled	All Sites		
Results for <u>Vielding Behavior</u>						
No. of Total Interactions	292	222	168	682		
No. of Non-infraction Non-yieldings	32	33	4	69		
No. of Uncertain Non-yieldings	38	31	10	79		
No. of Non-Yielding Violations	207	50	21	278		
No. of <u>Yielding Maneuvers</u>	15	108	133	256		
Yielding Rate	5.1 %	48.7 %	79.2 %	37.5 %		
Yielding Compliance	5.8 %	57.1 %	81.6 %	41.8 %		

Behavioural Indicators: Distance-Velocity Framework

Application to 15 sites

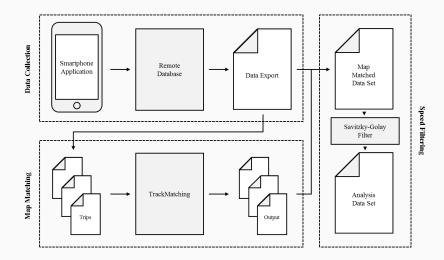
Outline

Motivation

Methodology

Automated Video Analysis Road User Behaviour and Safety Analysis

Case Studies

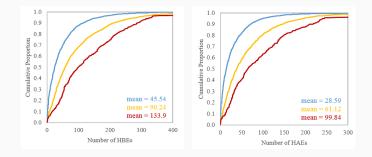

Cyclist Safety

Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

Conclusion

Extracting Indicators from Vehicle GNSS Data

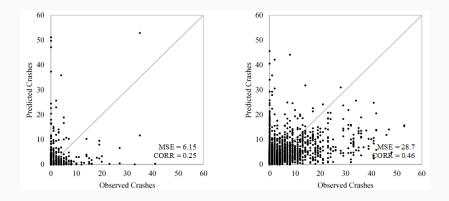


- Event-based measures: hard braking/acceleration events (threshold $\pm 3 m.s^{-2}$
- Congestion index CI = ^{v_f-v}/_{v_f} if free flow speed v_f ≤ vehicle speed v, 0 otherwise, averaged per link
- Average speed (*v_f* in the study)
- Coefficient of variation of speed among vehicles

Spearman's rho for HBEs and HAEs

Link Level			Intersection Level		
Classification	HBE	HAE	Classification HBE HAE		
Motorway	0.118	0.155	Motorway 0.603 0.641		
Primary	0.260	0.297	Primary 0.540 0.554		
Secondary	0.261	0.333	Secondary 0.532 0.536		
Tertiary	0.213	0.244	Tertiary 0.573 0.584		
Residential	0.270	0.256	Residential 0.615 0.625		

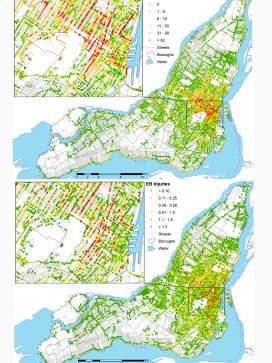
Validation of Event-based Measures



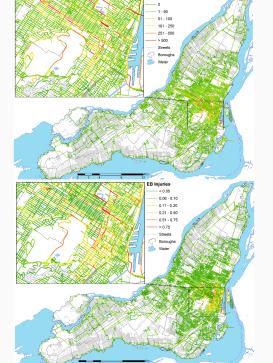
Sites were divided into groups with: 1) at least one fatal collision, 2) at least one major injury collision but no fatal, and 3) only minor injury collisions

Modelling Crash Frequency and Severity

- Full Bayesian Spatial Latent Gaussian Model (LGM) accounting for spatial correlations for crash frequency
- Fractional Multinomial Logit (FMNL) model for crash severity
- Site ranking using different costs per severity level (and link length) and comparison to a traditional crash-based approach
- Validation using cross-validation


Results

Results



- Calibrated models achieved a correlation of 0.60 with the observed data, while prediction resulted in correlations of 0.46 for intersections and 0.25 for links
- Site rankings were between 20 % and 45 % similar measured on the validation data set, depending on the number of hotspots considered

Cyclist Probe Data

Correlation of the number of hard cyclist decelerations with the **Empirical Bayes** estimator of the number of cyclist injuries at intersections: 0.6 and 0.53 for signalized and unsignalized intersections resp.

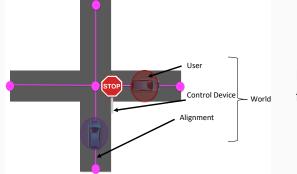
Cyclist Probe Data

Correlation of 0.57 for the number of hard cyclist decelerations with the Empirical Bayes estimator of the number of cyclist injuries on links

Outline

Motivation

Methodology


Automated Video Analysis Road User Behaviour and Safety Analysis Case Studies

Pedestrian Safety at Crossings

Surrogate Measures of Safety from Probe Vehicles

Conclusion

Minimal Simulation Model

Explore the shape of the safety hierarchy

• More studies are done

- More studies are done
- But we have not validated most surrogate measures of safety: lack of ground truth

- More studies are done
- But we have not validated most surrogate measures of safety: lack of ground truth
- Video analysis is useful and more and more used, more or less automatically

- More studies are done
- But we have not validated most surrogate measures of safety: lack of ground truth
- Video analysis is useful and more and more used, more or less automatically
 - possible manual annotation for quality improvement and additions (e.g. gender, age and helmet use)

• Promising new sources of data for continous safety diagnosis, often available from user-based (telematics) insurance programs

- Promising new sources of data for continous safety diagnosis, often available from user-based (telematics) insurance programs
 - how to combine multiple sources of data?

- Promising new sources of data for continous safety diagnosis, often available from user-based (telematics) insurance programs
 - how to combine multiple sources of data?
- New challenges of vehicle automation

- Promising new sources of data for continous safety diagnosis, often available from user-based (telematics) insurance programs
 - how to combine multiple sources of data?
- New challenges of vehicle automation
 - surrogate measures of safety provide the only way to measure safety as the relationships between safety and exogenous variables shift continuously and quickly

Acknowledgments

McGill University Prof. Luis Miranda-Moreno, Sohail Zangenehpour, Jillian Strauss, Ting Fu, Joshua Stipancic, Bismarck Ledezma-Navarro

Polytechnique Prof. G.-A. Bilodeau, Mohamed Gomaa Mohamed, Paul St-Aubin, Matin Nabavi Niaki

Collaborations Prof. Marie-Soleil Cloutier (INRS), Prof. Aliaksei Laureshyn (Lund)

Funded by the National Science and Engineering Council, the Québec Research Fund for Nature and Technology (FRQNT), the Québec Ministry of Transportation (MTQ) and the Québec Research Fund for Health (FRQS), the City of Montreal

nicolas.saunier@polymtl.ca

Questions?

Jackson, S., Miranda-Moreno, L. F., St-Aubin, P., and Saunier, N. (2013).

A flexible, mobile video camera system and open source video analysis software for road safety and behavioural analysis.

Transportation Research Record: Journal of the Transportation Research Board, 2365:90–98. Presented at the 2013 Transportation Research Board Annual Meeting.