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ABSTRACT

This paper presents novel application of automatddo analysis for the Before/After safety
evaluation of a scramble phase treatment. Datdadwvigtly has been a common challenge to
pedestrian studies, especially for proactive safeglysis. The traditional reliance on collision
data has many shortcomings in terms of the quafty quantity of collision record. Qualitative
and quantitative issues with road collision datrapre pronounced in pedestrian safety studies.
In addition, little information could be drawn fropollision reports regarding the implicated
mechanism of action. Traffic conflict techniquesd@deen advocated as a supplement to or an
alternative to collision-based safety analysis.oludited conflict analysis has been advocated as
a new safety analysis paradigm that empowers the/lzcks of survey-based and observer-
based traffic conflict analysis. One of the focusaa of pedestrian safety that could greatly
benefit from vision-based road user tracking isobefand-after (BA) evaluation of safety
treatments. This paper demonstrates the feasilofityonducting BA analysis using video data
collected from a commercial-grade camera in Chinatdakland, California. Video sequences
for a period of two hours before and two hoursrastgamble were automatically analyzed. The
before-and-after results of the automated analgsigibit a declining pattern of conflict
frequency, a reduction in the spatial density afflicts, and a shift in spatial distribution of
conflicts further from crosswalks.
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INTRODUCTION

“[Pedestrian exposure to the risk of collision igry difficult to measure directly, since
this would involve tracking the movements of atipgde at all times”(1).

The challenge of gaining insight into the mechanidraction that endangers road users
transcends the focus on pedestrian exposure tentire realm of road safety. The accurate
estimation of exposure as well as other quantitisdamental to road safety analysis, e.qg.
severity of a traffic interaction, can greatly bfnley analyzing road users’ positions in space
and time, i.e. road user tracks.([anual annotation of road user positions is tinmet a
resource-expensive, especially when pedestrianstadesd, e.g. (3)(4). Therefore, the
automated extraction of road users’ positions frateo observations has been advocated as a
resource-efficient and potentially more accurateraative (5).

Video sensors are selected as the primary sourdatafin this research. Video data is
rich in details, recording devices are becoming Egensive, and video cameras are often
already installed for monitoring purpose. Pedestiiacking in video sequences is traditionally
more challenging than other road users (6). Padastare locally non-rigid, are prone to visual
occlusion due to crowdedness, and are more variaisleape and appearance. Despite these
challenges, vision-based applications in the fefldedestrian studies have been demonstrated
with an increasing level of practical feasibilieyg. (5)(7)(8)(9)(10). One of the focus areas of
pedestrian safety that could greatly benefit frosmon-based road user tracking is before-and-
after (BA) evaluation of safety treatments. BA $égcare a key component of road safety
programs that aim at measuring the safety ber(efitabsence thereof) derived from a specific
engineering treatment.

Catering for the safety of non-motorized modeg&idl, in particular for walking, is
essential to meet the ever-growing demand for mgld sustainable transportation system. The
prevalent collision-based paradigm of BA studiesdsed on estimating the reduction in
collisions, in terms of frequency and consequemwtgch can be attributed to the evaluated
treatment. In order to draw statistically stablaauasions, e.g. explicating the effect of the
treatment away from all other confounding factordlisions are typically observed for
relatively long period (1-3 years) before as wslbé#ter the introduction of the treatment.
However, the reliance on collision data for BA as&d has the following shortcomings (11):

1. Attribution . The information obtained by police reports anénviews often does not
allow the attribution of road collisions to a sieglause. It is sometimes difficult to
pinpoint the failure mechanism that lead to a roaltision. In that, it is often required to
remedy or prevent events of which causes are recigaly known.

2. Data Quantity. Road collisions are rare events and are thersidsgct to randomness
inherent to small numbers(12). Drawing statisticathble inferences from such data is
typically challenging and costly in its own rightthile the object of road safety analysis
is the reduction of the risk of road collisionsisitypically based on the road collision as
the main data unit. That is, collisions have tous@nd be recorded over an adequately
long period in order to conduct safety diagnostishives rise to a paradoxical situation
in which the safety analyst, for the sake of metiogical correctness, strives to observe
events that ought to be prevented.

3. Data Quality. Road collision reporting is based on post-hocudegons, withess
accounts, and site observations. The process éafmantally deductive and subjective.
Collision records are often incomplete and lacladet The quality of road collision
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reporting has been deteriorating in many jurisditéi Reporting is also biased toward
highly damaging collisions, while non-injurious ksibns may go unreported.

Shortcomings in collision-based BA studies are awene pronounced in the study of pedestrian
safety. Pedestrian-involved collisions are morarious and less frequent than vehicle collisions
(13). Exposure measures, such as pedestrian voamneften difficult to obtain and expensive
to collect through in-field surveys (14). Surrogasad/or statistical predictors of these types of
data are often used in practice, e.g.(1). It isrothe case that the safety analysis may not afford
long-term collision observation after the introdantof a measure (15).

Arguments that support the adoption of traffic ¢iehtechniques find more ground in
BA studies that concern pedestrian safety. Tr&baflict Techniques (TCTs) are based on
analyzing the frequency and severity of traffic ftiots at an intersection, typically by a team of
trained observers. Traffic conflict is defined as ‘Observable situation in which two or more
road usergapproacheach other in space and time to such an extentitéie is aisk of collision
if their movements remainathchangetl(16). Traffic conflicts are more frequent tharado
collisions and are of marginal social cost. Traffanflicts provide insight into the failure
mechanism that leads to road collisions. BA stublesed on traffic conflicts can be conducted
over shorter periods. A theoretical framework, agated in this study, ranks all traffic
interactions by their severity in a hierarchy, wethlisions at the top, undisturbed passages at the
bottom, and traffic conflicts in between (12).

The traditional way of collecting traffic conflidiata is challenged on several accounts.
Inter- and intra-observer variability is a commdralkenge for the repeatability and consistency
of results from traffic conflict surveys (17). Rebbservations are costly to conduct and demand
staff training. Despite decades of conceptual dgraknts, there is no universgderational
definition of a traffic conflict, e.g. objectivelyjeasurable interpretation of words “approach”,
“risk of” and “unchanged” in the previous conceptdefinition, (11). Finally, the estimation of
objective conflict indicators, such as Time to @adin (18) using field observations can be
difficult.

Automating the process of traffic conflict analysigreatly appealing in the context of
BA studies of treatments intended to enhance pedesafety. Process automation can enable
the objective analysis of pedestrian-vehicle cotglin an accurate, objective, and cost-efficient
way. The goal of this study is to demonstrate aehapplication of automated video analysis for
the BA analysis of a scramble phase treatment aedlgnanually in previous work (19). In later
stage, the practical use of the developed systesn assisting tool is demonstrated. The length
of the video sequence to be reviewed by an obseowdd be greatly reduced. This study is
another step in a research direction that is,éd#st of the authors’ knowledge, unique in the
field of road safety and pedestrian studies.

The objectives of this study are to: 1) Report sauechnical improvements to the video
analysis system. 2) Demonstrate the feasibilityarfducting BA analysis using video data
collected from a commercial-grade camera, fromatively low altitude, and using a video not
collected initially for the purpose of automatedea analysis.
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PREVIOUS WORK
Conflict-based Before-and-After Studies

There is a significant body of work on the evaloatof pedestrian safety treatments using non-
collision data. The literature contain studies tiedy on traffic conflicts (15)(19-27) and
behavioral surrogates such as motorist yielding {28). The difficulties in relying on collision
data in conducing BA studies is acknowledged inliteeature, e.g. (28) (15), in which
surrogates safety measures were used. The sthdiesohcerned the evaluation of pedestrian
scramble were predominantly conducted using trafhiaflicts (25) (26) (19) (27) (except for
(29)). There is some agreement that scramble pgheetenent reduces pedestrian-vehicle
conflicts except when pedestrian compliance ralews(30) (25). Among the reviewed studies,
the study by Malkhama et al. (23) was the only ionghich data required for evaluation,
motorist deceleration, was automatically collected.

The previously identified issues with the observased traffic conflict analysis were echoed by
a recent evaluation study of pedestrian treatmar&n Francisco (15). The authors noted
issues with the subjectivity of the definition adffic conflict, inter-observer agreement, and the
labor cost of extracting observations from videtadaere highlighted. The use of automated
video analysis tools is being increasingly advatabeovercome these shortcomings.

Video-based Road User Detection and Tracking

The previous work reported in (5) is updated is frmper. To study pedestrian-vehicle conflicts,
all road users must be detected, tracked from ateowvrame to the next, and classified by type,
at least as pedestrians and motorized road udeissisTa challenging task in busy outdoor urban
environments. In addition to specific problems whaigking pedestrians, common problems are
global illumination variations, multiple object tking, and shadow handling (6). The different
approaches are classified into (6):

» Tracking by detection: detection of objects is dasmg background modeling and
subtraction with the current image (7)(31), or defable templates, i.e. an appearance
model using color distribution, edge charactersstand texture.

» Tracking by flow: selecting features on moving alge and matching them between
successive images provide feature tracks that eamuistered into object trajectories.
This approach is also called feature-based trackinmghas been applied to traffic
monitoring in (32), and pedestrian safety anal{s)s

» Tracking with probability: tracking is representesia probabilistic inference problem in
a Bayesian tracking framework, e.g. (33). This apph may fail in scenes where the
objects interact and occlude each other. Thisablpm can be addressed using particle
filters and Markov chain Monte Carlo methods famgéing.

Despite recent progress, tracking performanceef/grious systems is difficult to report and
compare. This is likely because many of these Bystae not publicly available or their details
disclosed, and benchmarks of comparison are rar@ainsystematically used. Tracking
pedestrians and mixed traffic in crowded scenessillsan open problem. To the authors’
knowledge, (5) was the first attempt to developlby ffunctional video-based pedestrian conflict
analysis system.
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METHODOLOGY

Previous work has been performed to develop a \vaakadysis system that can automatically
detect, classify, and track road users and intetpesr movement (5). The core of the system for
the detection and tracking of road users reliefeature-based tracking (32) and a system
developed at the University of British Columbiallbwing is a brief description of
improvements in the system, mainly to meet videalyais challenges faced in this study.

Road User Classification

To analyze pedestrian-vehicle conflicts, it is reseey to identify pedestrians and motorized
vehicles. The system described in (5) (34) usqukad classifier, a threshold on the maximum
speed reached by road users during their exisfenctassification. This “speed classifier”
however proved inadequate for the BA dataset availr this study.

A new method was developed for that purpose, ieddy previous work done by the
authors. In (35), the distribution of road userajectories is learnt to allow the prediction of
road users’ future positions to estimate the praibabf collision and analyze road users’
interactions. A small subset of actual road useagectories, callegrototypetrajectories, is
identified using an incremental unsupervised atbaridescribed in (35), relying on the Longest
Common Subsequence (LCSS) similarity (36). The L&SSvariation of the edit distance. The
intuitive idea is to match two sequences by allgatimem to stretch, without rearranging the
sequence of the elements, but allowing some elenterite unmatched. L&tandB be two
trajectories of moving objects with sine@ndm respectivelyd = [(ay1,ay,1), -, (@xn ayn)]
andB = [(by1,by1), ) (bxn, byn)]. FOr atrajectory, let Head(A) be the sequence
Head(A) = [(ax1,ay1), «, (@xn-1,ayn-1)]- Given a real number> 0, the basic similarity
measurd.CSS, (A, B) is defined as follows (36):

- 0if AorBis empty,
- 1—LCSS.(Head(A), Head(B)) if |ayn — byn| < € and|a,, — by | <,
- max (LCSS.(Head(A),B),LCSS.(A, Head(B))) otherwise.

The constang controls the matching threshold for the Chebydtistance used by
default (it is chosen over the Euclidean distareabise it is less expensive to compute while
yielding good results), but can be replaced bydiastance, and more conditions can be added. In
this work, a second similarity measur@ss, 4 (4, B), with0 < 6 < 1, is used by supplementing
the trajectories with the velocity at each instamdl adding the condition that the cosine of the
velocities be below. The associated distances are obtained by sdakngimilarities td0,1]

LCSSe(AB

DE(A'B)zl_F;,m)) .. (1)
LCSS50(A.B)

De,e(A,B)=1—WGTm - (2)

The prototypes are learnt usifg(4, B) to yield a smaller set. The “prototype classifieses
the 1 nearest-neighbor method with the distahgg4, B) and a threshold (0 < § < 1) on the
distance to limit the matches to the closest pyped. The object is assigned the type of the
closest prototype. Given that a threshold is uaadybject trajectory may have no prototypes
with a distance o#, in which case it is classifier using the defapleéed classifier.
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The prototypes need therefore to be labeled. Hhisling is a one-time semi-automated
operation, where the prototype trajectories ast Gitassified using the speed classifier, then
reviewed and corrected if needed by a human arorotan example of labeled prototypes is
given in Figure 1. A comprehensive comparison efdlassifier on a subset of 1063 manually
annotated trajectories was done and the resuligrasented in Table 1 and Figure 2. It shows
the clear superiority of the prototype classifigeothe speed classifier.

o ~ y/ N y ) A '
/ ~ il S - A f N Uy b P a
FIGURE 1 Road user prototypes for the before-andfer scramble phase. Figure a) shows the pre-
scramble vehicle prototypes (pre-scramble/veh). Figes b, ¢, and d show pre-scramble/ped, post-
scramble/veh, and post-scramble/ped, respectivelyhe color coding is the result of a k-means

clustering in 4 classes based on the prevalent paiype direction.
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TABLE 1 Results of the comparison of the speed angrototype classifiers

Classifier Speed Max Max True positive | False positive
Threshold pPccC K-statistic ratef rate

Speed classifier 2.90 m/s 0.85 0.70 0.96 0.26

Speed classifierwith a |5 55 0.87 0.73 0.93 0.21

moving average filter

Prototype classifier - 0.97 0.95 0.98 0.04

1 Percentage correct classification (PCC) represbretaumber of road user trajectories
correctly classified (vehicle into vehicle and p&di@n into pedestrian) over the total number of
trajectories.

2 A positive is the classification of a road usepiatpedestrian and a negative is the
classification of a road user into a vehicle. Aetpositive is a pedestrian classified into a
pedestrian (ped-ped). A false positive is vehinote pedestrian (veh-ped). A true negative is veh-
veh and a false negative is ped-veh. The ratesanguted by dividing over the number of
trajectories in the respective classes.

Receiver operating characteristic curve for three classification schemes
1
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FIGURE 2 Receiver Operating Characteristic (ROC) Curve for he speed and prototype classifier
(for the smoothed max speed classifier, the road esspeed is smoothed with a moving average
filter). The threshold for the speed classifiers i8m/s. The ROC curve is the plot of the true posite
rate versus the false positive rate (the ratio ofhe number of false positives over the total numbeuf
vehicles), for various settings of the classifiergarameters. A perfect classifier would yield a pait

in the upper left corner of the ROC space, at coordate (0,1) meaning no missed pedestrian and no
false positives. A completely random guess, wouldvg a point along the diagonal line from the left
bottom to the top right corners, also called line bno-discrimination (represented in the graph).
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Validation of Tracking Performance

The tracking results of the system need to be at@dl The safety analysis presented in this
paper relies on road users’ tracks. Since mostiegisesearch has embraced instantaneous per-
frame performance measures, a new algorithm waslaleed to automatically assign detected
objects (the output of the system) to ground talifects (manually annotated tracks) (37). The
results are the unigue assignment of these objemtect assignments (one detected object-to-
one labelled object), over-segmentations and ox@ugings (one-to-many and many-to-one),
missed and false detections (one-to-zero and peonw). For this work, the results were
condensed into correct assignments, missed areldatections, and the performance measure is
the following cost function that measures the oNéracking error:

ara*Nfa+amd*Nmad
_ ..(3)

Cost =

whereN is the number of annotated objedtg, andNmng are respectively the number of false and
missed detections;g andamg are respectively the weights for false and miskstdctions, set
respectively to 0.25 and 0.75 in this study.

The choice of weights is prompted by a target afimizing missed detections, which
might translate into missed pedestrian-vehicleratigons, while still trying to minimize, to a
lesser extent, the number of false detectionssdace the number of falsely detected
interactions, called false alarms. This framewodswsed to optimize the cost function over the
space of a few key tracking parameters, namelgdhn@ection distant®connection the maximum
distance between two features for their connectod, the segmentation distai2&gmentationthe
maximum difference between the minimum and maxingistance between two features. Data
was annotated for 1495 frames, resulting in 4lkgd®bjects. The space ®bnnection
Dsegmentatioh Was search systematically (See Figure 3) andegtkthe selection of (0.45, 0.12).
Figure 4 presents sample frames with manually atedtdata and the result using the
automatically tuned parameters.

o
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FIGURE 3 Plot of the cost function with respect tdDconnections Dsegmentation) -
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b)

FIGURE 4 Sample frames from validation results. Thenumber of missed detections is 3/32 with 29
false detections mainly due to over-segmentationidure a) shows a sample frame from a post-
scramble sequence with labeled pedestrians. Figubg shows the pedestrians tracked in the same
frame using the optimized tracking parameters. Theicyclist annotated with a box in Figure b) is
correctly identified as a non-pedestrian (given acseen label ta’).

Camera Calibration

The positional analysis of road users requiresratewestimation of the camera parameters. The
camera parameters calibrated in this study arexdnnsic parameters (that describe the location
and orientation of the camera) and two intrindia{trepresent the projection on the image
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space). Once calibrated, it is possible to recovarworld coordinates of points in the video
sequence that lie on a reference surface with knoathel (pavement surface).

Since videos were collected by a third party, a&teshe camera was not possible and
therefore all camera parameters must to be infdroma video observations and an orthographic
image of the intersection. A mixed-feature camal@bration approach was introduced in
previous work (5). Each calibration feature impose®ndition based on its shape, position, and
length in both image and world spaces. An additioabbration feature was necessary to
enhance the accuracy of the camera calibratiordo@s¢he parallelism of calculated vertical
line (depicted in blue in Figure 5d) to a manualiyotated vertical direction (observed from
light poles).

The accuracy of the estimated parameters was tastegd a set of 12 lines segments of
true length estimated from the orthographic imddmes set of observations was not used in
calibration. The calibration error is representgdHe discrepancy between calculated and
annotated segment lengths normalized by the lesfgtach segment. The accuracy of the final
estimates was satisfactory (0.096 m/m) and no déarthror in conflict analysis was attributed to
inaccurate estimated camera parameters.

Calibration Features (points, distances, and angolastraints) in world space (left) and image
space(right).

FIGURE 5 Calibration of the video camera. Figure a)and b) shows the calibration features. Points
are labelled, lines in red are two distance constmats, and lines in blue constitute angular
constraints. The inferred camera location is markedFigures c) and d) show the projection of a
reference grid from the world space in c) to imagspace in d). World images are taken from

Google Maps.
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Conflict Indicators

Conflict indicators are advocated as an objectie guantitative measure of the severity
(proximity to collision) of a traffic event (12).hls study concerns traffic events that include a
potential conflict between a pedestrian and a resteptrian road user. The four conflict
indicators calculated in this study are: Time tdliSion (TTC), Post-Encroachment Time (PET),
Deceleration-to-Safety Time (DST), and Gap Time XGT

TTC is defined as “.the time that remains until a collision between webicles would

have occurred if the collision course and spee@m@ihce are maintained.” (38). PET is the time
difference between the moment an offending road lesees an area of potential collision and
the moment of arrival of a conflicted road usergassing the right of way (39). GT is a variant
of PET calculated at each instant by extrapoldtiegmovements of the interacting road users in
space and time(40). Deceleration to Safety Timel()DSdefined as the necessary deceleration
to reach a non-negative PET value if the movemeintise conflicting road users remain
unchanged.

An accurate in-field estimation of objective codflindicators is challenging and inherently
subjective. Semi-automated methods have been ng@évious studies in which road user
positions are manually annotated (12). This protesse-consuming and does not support
large-scale data collection. The calculation offtcinindicators in this study follows main lines
of an algorithm presented in previous work (8). Viteos analyzed in this study include
significantly large number of road users - espgc@destrian movement during pedestrian
scramble. Issues with large data structures amdehe following measures were taken:

1. Road user tracks are extrapolated at their extresnit time by the amount of 3
seconds assuming constant velocity. This exterditime observed road user tracks
was conducted to detect conflicts in the furthesswalks of the intersection that
occur after vehicle yielding. Vehicles are not ked when stationary and the image
quality at further crosswalks could not enableanste-tracking when movement is
resumed.

2. The list of traffic events to be analyzed is redlibased on the following proximity
heuristic:

a. Collect five sample frame numbers selected unifgrimdm the time span in
which the two road users co-exist.
b. Calculate at every point the spacifijgoetween the pedestrian and the
potentially conflicting vehicle.
c. Discard this event ifnin(S;) > 10m.
3. The remaining list of events is further reducedhgghe following motion similarity
heuristic:
a. For each of the previous sample frame numbersyleaécthe smoothed
average (window of 10 frames) of the direction avement.
b. Calculate the angle between the average movemeations of the
pedestrian and the vehicle.
c. If the cosine of this angle is greater than 0.8¢alid this event.
Road users are assumed to be represented by momtsentroid.
The collision area is theoint of intersection of pedestrian and vehicle tracks.
The objective definition of a collision course etextrapolation of road user
positions that leads to a minimum spacing shonan the distance traversed by the

o gk
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conflicting vehicle at current speed in 1.5 sedr&polation of road user positions are
based on assuming they will maintain a constaratoisi.

The tracking parameters used in this study leamtdwver-segmentation of road users, i.e.
tracking of multiple objects over the same road.uare example is show in Figure Bhis was
increases the chance of tracking of road usergcesd|y pedestrians, at further crosswalks. To
reduce this effect, events with calculable conflicticators that involve road users within a
proximity constraint are grouped into one event.

This is implemented by creating a graph conneqgtedgestrian objects and interacting
vehicle objects for which there are calculable toniihdicator. All pair-wise spacing between
vehicle objects at the moment of theim TTC andmin GT are computed. Vehicle objects are
further connected if their spacing is below a thodd of 3m. The subgraph of connected vehicle
objects is replaced by a new vehicle object whmfiflect indicators resultant conflict indicators
are taken as the minima of TTC, PET and GT andrtée@mum of DST. Details of this grouping
are presented in Appendix 1. Figure 4 providestauidil illustration.

b)

Vehicle
Objects

Ped object 2274

Veh object
min GT< 5 sec
D ——
minTTC< 5 sec

o

£
Q
S
(%)

Veh object

FIGURE 6 Conflict clustering. Figure a) shows an iteraction between a pedestrian and an over-
segmented vehicle (tracked twice, obje®638 on the front side and the othets639 encompasses its
horizontal projection). The spacing between theseehicle objects and the pedestrian at minimum
TTC and GT are 2.18m and 1.53m respectively. Bothra below a spacing threshold of 3m and are
therefore grouped. Figure b) shows an illustratiorof the graph implementation.

ANALYSIS AND RESULTS

The analysis of four hours of video was conductgdmatically at a pace of approximately one
hour of video/day/machine. Sample frames with sugassed road user tracks are shown in
Figure 7. The spatial distribution of traffic caoflpositions is shown in Figure 8. A conflict
position is taken as the location of the confligtirehicle at the moment when there was a
minimum time separation from the pedestrian. Tiretseparation is measured by TTC as well
as GT. There is an evident change in the densitsafiic conflicts per unit area and time. The
spatial distribution of traffic conflicts migratedvay from the crosswalks after the scramble
phase. The density of traffic conflicts per ungamwas also reduced.
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The distributions of the calculated conflict indimas before-and-after scramble are shown in
Figure 9. There is an evident reduction in thedewy of traffic conflicts. It was not attempted
to conduct statistical analysis of this data foo twasons:

1. Validation of the video analysis system on thisads#quence was not conducted to

measure the reliability of the estimates. To meistjppurpose, an expert opinion is to be
sought on the detection and severity ranking otriéic conflicts in the video
sequences.

2. ltis not clear how the severity of traffic evemgasured by the calculated conflict
indicators should be inducted in a statistical gsial

Misclassification of pedestrians into vehicles wal evident, however at a much lower
frequency than speed-based classification. Figuwtgows a sample frame in which a pedestrian
is misclassified as a vehicle while walking in @aasgble phase.

CONCLUSIONS AND FUTURE WORK

This study demonstrates the feasibility of conchvgctefore-and-after evaluation of pedestrian
safety measures using automated analysis of vid&o Bedestrian tracking in video data is an
open problem for which some improvements have beastigated. The reliance on motion
prototypes demonstrated a clear advantage ovesifatasion methods used in previous studies.

The context of this study is the evaluation of shéety benefit of the introduction of the
pedestrian scramble phase. A two-hour video se@ueas analyzed for pre- and post-scramble.
Despite that the video analyzed in this study wa<collected initially for the purpose of
automated analysis, tracking accuracy was sat@facthe automated analysis of four conflict
indicators shows a reduction in conflict frequenayaddition, there was a general reduction in
the spatial density of conflicts after the safegatment.

It was not attempted in this study to draw a siatitinference regarding the safety
benefit of the pedestrian scramble. It represemisi@ortant continuation of this work, and
potentially a different paradigm of safety diagmsaiat considers the frequency as well as
severity of traffic events. A framework for safeliagnosis places all traffic events on a
continuum of severity from uninterrupted passagdsdffic collisions (12). Such framework can
clearly benefit from automated video analysis.

An important continuation of this work can alsotbe&onduct a comparison between the
severities of traffic interactions measured bydpgtem against expert rating. Ongoing research
is planned to be conducted on this subject.
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Event :2939 objects: 1501 | 5074 | TTC :1.162 PEF max  Event :2609 objects :1317 | 4966 | TTC :5.318 FEA66 max
DST :7.260 min GT :1.105 DST :3.355 min GT :1.198

Sy T e ST - -

Event: 2306 objects: 1313 | 4812 TTC 0 PET 2.07 TDS
max DST :0.437 min GT :1.113 -0.075 GT 2.83

* The two road
users are not on
a collision
COurse

-

Event :2372 objectd167 :4804 | TTC :2.973 PET :0 max DEvent :14292 objects :2657 :7865 | TTC :0 PE$3Inax DST
:-0.379 min GT :1.473 :0.0 min GT :0.0
FIGURE 7 Sample frames with automated road useracks. The captions display “Event” the

event order in the list of potential interactions,“objects” the numbers of the interacting objects,
and the indicated conflict indicators.
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Intensities are innumber of conflict positions per square meter per 2 hours.

FIGURE 8 Before-and-after spatial distribution of traffic conflicts. A conflict positions is selectd
as the position at which the motorist was separatelly either a minimum Gap Time (GT) or
minimum Time to Collision (TTC). Figure a) shows tle before spatial distribution of conflict
locations based on min GT. Figure b) shows thafter distribution of conflict positions based on min
GT. Figure c) shows thebefore distribution of motorist position at min TTC. Figur e d) shows the
after distribution of conflict positions based on min TTC.
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FIGURE 9 Distribution of different conflict indi cators values for before and after scramble phasénalyzed video durations are 2 hours
before and 2 hours after. |PET| and |GT| are the ntulus (unsigned) value of the Post Encroachment Tienand Gap Time conflict
indicator.
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APPENDIX 1
Algorithm 1: Algorithm for grouping pedestrian-vehicle event
Definitions: 1) A pedestrian objeg isi™ in the list of all pedestrian objects that existhie
list of traffic events to be analyzed.
2) A vehicle objecv; isj™ in the list of all vehicle objects that exist hetlist of
traffic events to be analyzed.
Input: LetV; rrc be the position of thi" vehicle object at the position that exposed the
interacting pedestrian with the shortest Time tdli€ion (TTC).
LetV; ¢r be the position of thi" vehicle object at the position that exposed the
interacting pedestrian with the shortest Gap Ti@€)(

Output: An updated list of traffic events that does nattem, but one, the grouped traffic

events.
begin
1- for each pedestrian objed?; find within the list of vehicle objects the subsén vehicle
objectsV; ; that coexist withP; in the same traffic event.
2- Create an adjacency matdy,,, that represent the spacing between the positibns o

every pair of vehicle objedf ; at the time of minimum TTC. ElementsAnthat
correspond to vehicle objects that do not possesfcalable TTC (not on a collision
course) are assigned a token value (0) that isudisd later.

3- Find the connected graphs of all vehicle olsj@tt; ; in which every pait, m of
connected nodes satisfied the conditfipy),, < connection_threshold. The threshold is
taken 3.0m in this study.

4- Repeat steps 2 and 3 for vehicle positionseatnoment of minimun®T.
5- Combined the list of connected graphs and vernedundancies.
6 - Create a new event with TTC at every time stguals the minima at each common time

instant of all sequences of TTC observations foV;gl PET equals the minima of all
PET, GT equals the minima of GT observations atyetmne instant, and DST equals the
maxima of all sequence.

7-  Remove but one from the list of events albrders that containg ;.

8 - Add the new events created in 6 to igteof traffic events to be analyzed.



