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Abstract 
 
Over the last decade, substantial technological progress has been achieved in the discipline of 
computer vision, driven by the inexpensiveness of video sensors and of computer processing. 
Techniques of particular importance have been developed in the area of automated road user 
detection and tracking in video sequences. The applications of computer vision techniques in 
the disciplines of traffic engineering and road safety are numerous and effectively address well-
entrenched challenges in these fields. Traditionally, traffic conflict techniques (TCT) have been 
advocated to empower the weaknesses of collision data by relying on relatively more frequent 
and costless events. Traffic conflict techniques have been challenged since their inception by 
observer subjectivity and the costliness of conducting field surveys. The adoption of computer 
vision techniques in conducting TCT has been advocated by the authors and demonstrated in a 
number of successful applications. This study demonstrates an extended before-and-after 
analysis for the evaluation of a pedestrian safety treatment. The results obtained using the 
automated video analysis system are consistent with previously published results using based 
on human observers. 

  

 

Résumé 
 
Au cours de la dernière décennie, de grands progrès technologiques en vision par ordinateur 
ont été permis par la baisse des coûts des capteurs vidéo et de la puissance de calcul. En 
particulier, des techniques ont été développées pour la détection et le suivi automatiques des 
usagers de la route dans des séquences vidéo. Les applications des techniques de vision par 
ordinateur dans les disciplines de l’ingénierie du trafic et de la sécurité routière sont 
nombreuses et permettent de traiter efficacement des problèmes tenaces dans ces domaines. 
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Les techniques des conflits de trafic (TCT) ont été traditionnellement mises en avant pour 
remédier aux faiblesses des données de collision en reposant sur des événements relativement 
plus fréquents et sans conséquences. Les TCTs ont été contestées depuis leur origine à cause 
de la subjectivité des observateurs et du coût de la collecte de données sur le terrain. 
L’adoption de techniques de vision par ordinateur pour l’utilisation de TCTs a été recommandé 
par les auteurs et illustrée dans plusieurs applications. La présente étude est une analyse 
avant-après étendue pour l’évaluation d’un aménagement pour la sécurité des piétons. Les 
résultats obtenus à l’aide du système d’analyse automatique de données vidéo sont en accord 
avec les résultats publiés précédemment qui reposaient sur des observateurs humains. 

 

INTRODUCTION 
 
“[Pedestrian exposure to the risk of collision is] very difficult to measure directly, since this would 

involve tracking the movements of all people at all times” [1]. 
 

The challenge of studying the mechanism of action that exposes road users to the risk of 
collision transcends the focus on pedestrians to all other road users. The accurate estimation of 
exposure as well as other fundamental quantities in road safety analysis can greatly benefit by 
analyzing the microscopic positions of road users, i.e. road user tracks [2]. The automated 
extraction of road users’ positions from video data using techniques in the discipline of computer 
vision has been advocated as a resource-efficient and potentially more accurate alternative [3]. 
Video sensors are selected as the primary source of data due to advantages of richness in 
details, inexpensiveness, and ubiquitous usage for monitoring purposes. Despite the technical 
challenges of pedestrian tracking in video data, such as visual occlusion and non-rigidity, vision-
based applications in the field of pedestrian studies have been demonstrated with an increasing 
level of practical feasibility, e.g. [3,4]. One of the focus areas of pedestrian safety that can 
greatly benefit from vision-based road user tracking is before-and-after (BA) evaluation of safety 
treatments. BA studies are a key component of road safety programs that aim at measuring the 
safety benefits (or absence thereof) derived from a specific engineering treatment. 
 
The classical collision-based approach to BA studies is based on estimating the reduction in the 
frequency and consequences of collisions attributable to the evaluated treatment. In order to 
draw statistically stable conclusions, e.g. explicating the effect of a treatment from confounding 
factors, the observational period for collisions extends for relatively long period (1-3 years) 
before as well as after the introduction of the treatment. The reliance on collision data for BA 
analysis invites the following shortcomings [5]: Attribution) police reports and interviews often 
do not enable the attribution of road collisions to a single cause or a set of causes with 
satisfactory accuracy, Data Quantity) road collisions are rare events that are subject to 
randomness inherent to small numbers [6], and Data Quality) collision records are often 
incomplete and lack important details, and the quality of road collision reporting has been 
deteriorating in many jurisdictions.  
 
Classical shortcomings in collision-based BA studies are even more pronounced when studying 
pedestrian safety. Pedestrian-involved collisions are more injurious and less frequent than 
vehicle collisions. Exposure measures, such as pedestrian volume, are often difficult to obtain 
and expensive to collect through in-field surveys. It is often the case that the safety analysis 
may not afford long-term collision observation after the introduction of a measure. To address 
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previous shortcomings, Traffic Conflict Techniques (TCTs) have been advocated as an 
alternative approach to road safety analysis. Classically, TCTs are based on in-site observation 
of traffic conflicts at an intersection by a team of trained observers. Traffic conflicts are more 
frequent and less costly than road collisions. Traffic conflicts also provide useful insight into the 
failure mechanism that leads to road collisions. BA studies based on traffic conflicts can be 
conducted over shorter periods. A theoretical framework, advocated in this study, ranks all 
traffic interactions by their severity in a hierarchy, with collisions at the top, undisturbed 
passages at the bottom, and traffic conflicts in between [6]. The classical observer-based TCT is 
challenged on several accounts due to: inter- and intra-observer disagreement, cost of field 
observation, demand for staff training, and difficulty of in-field estimation of objective conflict 
indicators, such as the Time to Collision. 
 
Automating the process of traffic conflict analysis is greatly appealing in the context of BA 
studies of treatments intended to enhance pedestrian safety. The automation of TCT enables 
the objective analysis of pedestrian-vehicle conflicts in an accurate and cost-efficient way. The 
goal of this study is to demonstrate a novel application of automated video analysis for the BA 
analysis of a scramble phase treatment analyzed manually in previous work [7]. This study 
provides extended analysis of previous work [8] on longer video sequences involving more in-
depth analysis based on the development of an aggregate severity index. This study is another 
step in a unique research direction in the field of road safety. The objectives of this study are to: 
1) Provide a description of the methodology of analysis. 2) Provide more in-depth analysis of the 
aggregation of conflict data into a severity index.  
 

PREVIOUS WORK 
 
There is a significant body of work on the evaluation of pedestrian safety treatments using non-
collision data. The literature contains studies that rely on traffic conflicts and behavioral 
surrogates such as motorist yielding rate [9]. Studies on the evaluation of pedestrian scramble 
treatment were mainly conducted using traffic conflicts, e.g. [10]. The work by Malkhamah et al. 
[11] was the only one found in the literature in which safety evaluation data was automatically 
collected. The previously identified issues with the observer-based traffic conflict analysis were 
echoed by a recent evaluation study of pedestrian treatments in San Francisco [12]. The 
authors noted issues of observer subjectivity and the labor cost of extracting observations from 
video data. The application of computer vision techniques is being increasingly advocated to 
overcome these shortcomings. In order to study pedestrian-vehicle conflicts, all conflicting road 
users must be detected, tracked in subsequent frames, and classified into pedestrians and 
motorized road users. This is a challenging task in busy outdoor urban environments. Common 
problems are global illumination variations, multiple object tracking, and shadow handling [13]. 
Several approaches for road user tracking have been noted in the literature [3], amongst which 
feature-based tracking has been adopted in this study. 
 

METHODOLOGY 
 
Previous work has been performed to develop a video analysis system that can automatically 
detect, classify, and track road users and interpret their movement [3]. The core of the system 
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for the detection and tracking of road users relies on feature-based tracking [14]. Figure 1 
illustrates the architecture of the video analysis system. Following is a brief description of 
improvements in the system to meet challenges faced in this study. 
 

1. Road User Classification 
 
To analyze pedestrian-vehicle conflicts, it is necessary to identify pedestrians and motorized 
vehicles. The system described in [3] used a speed classifier, a threshold on the maximum 
speed reached by road users during their existence for classification. This “speed classifier” 
however proved inadequate for the BA dataset available for this study. A new method was 
developed for that purpose, inspired by previous work by the authors. In [15], a small subset of 
actual road users’ tracks, called prototype trajectories, is identified using an incremental 
unsupervised algorithm relying on the Longest Common Subsequence (LCSS) similarity [16]. 
The object is assigned the type of the closest prototype similar to the methodology described in 
[8]. An object trajectory that does not have a matched prototype is classified using the default 
speed classifier. Labeling of prototypes is performed once, where the prototype trajectories are 
first classified using the speed classifier, then reviewed and corrected, if required, by a human 
observer. A comparison of the classifiers on a subset of 1063 manually annotated trajectories 
was done and the results presented in Table 1 show clear superiority of the prototype classifier 
over the speed classifier. Examples of pedestrian prototypes are shown in Figure 2. 
 

2. Validation of Tracking Performance 
 
The safety analysis presented in this paper relies on road users’ tracks extracted using an 
optimized set of parameters. The obtained tracking parameters minimize the difference between 
a sample of observed tracks and ground truth (manually annotated) tracks. A new algorithm was 
developed to automatically assign detected objects (the output of the system) to manually 
annotated tracks [17]. The assignation results can be used to calculate various tracking 
performance measures, such as the numbers of correct assignments (one detected object-to-
one labelled object), over-segmentations and over-groupings (one-to-many and many-to-one), 
missed and false detections (one-to-zero and zero-to-one). For this work, the results were 
condensed into correct assignments, missed and false detections, and the performance 
measure is the following cost function that measures the overall tracking error: 
 

𝐶𝑜𝑠𝑡 =
𝛼𝑓𝑑 ∗𝑁𝑓𝑑 +𝛼𝑚𝑑 ∗𝑁𝑚𝑑

𝑁
          …(1) 

 
where N is the number of annotated objects, Nfd and Nmd are respectively the number of false 
and missed detections, αfd and αmd are respectively the weights for false and missed detections, 
set respectively to 0.25 and 0.75 in this study. This framework was used to optimize the cost 
function over a range of values for key tracking parameters. 
 

3. Camera Calibration 
 
The positional analysis of road users requires accurate estimation of real-world coordinates of 
road users’ positions as they appear in the video. This can be achieved by conducting camera 
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calibration. The camera parameters recovered in this study are six extrinsic parameters (that 
describe the location and orientation of the camera) and two intrinsic (that represent the 
projection on the image space). Once calibrated, it is possible to map points in the image space 
back to real-world coordinates assuming that they lie on a reference surface with known model 
(pavement surface). The camera calibration algorithm used in this study was developed by the 
authors in [18]. 

Classifier 
Speed 

Threshold 
Max 

PCC1 
Max 

К-statistic 
True positive 

rate2 
False positive 

rate 

Speed classifier 2.90 m/s 0.85 0.70 0.96 0.26 

Speed classifier with a 
moving average filter 

2.30 m/s 0.87 0.73 0.93 0.21 

Prototype classifier - 0.97 0.95 0.98 0.04 

1 PCC: Percentage correct classification 2 A positive is the classification of a road user into a pedestrian 
and a negative is the classification of a road user into a vehicle. A true positive is a pedestrian classified 
into a pedestrian (ped-ped). A false positive is vehicle into pedestrian (veh-ped). A true negative is veh-
veh and a false negative is ped-veh. The rates are computed by dividing over the number of trajectories 
in the respective classes.  

Table 1 Results of the comparison of the speed and prototype classifiers 
 
The calibration error is the discrepancy between calculated and annotated segment lengths 
normalized by the length of each segment. The accuracy of the final estimates was satisfactory 
(0.096 m/m) and no further error in conflict analysis was attributed to inaccurate estimated 
camera parameters. Visual depiction of camera calibration is presented in Figure 3. 
 
a) 

   

b) 

  
Figure 2 - Pedestrian prototypes for the before-and-after scramble phase. Figure a) 
shows the pre-scramble prototypes and Figures b) shows post-scramble prototypes. 
 
 

Conflict Indicators 
 
Conflict indicators are advocated as an objective and quantitative measure of the severity 
(proximity to collision) of a traffic event [6]. This study concerns traffic events that include a 
potential conflict between a pedestrian and a non-pedestrian road user. The four conflict 
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indicators calculated in this study are: Time to Collision (TTC), Post-Encroachment Time (PET), 
Deceleration-to-Safety Time (DST), and Gap Time (GT). TTC is defined as “…the time that 
remains until a collision between two vehicles would have occurred if the collision course and 
speed difference are maintained”.  PET is the time difference between the moment an offending 
road user leaves an area of potential collision and the moment of arrival of a conflicted road 
user possessing the right of way. GT is a variant of PET calculated at each instant by 
extrapolating the movements of the interacting road users in space and time. Deceleration to 
Safety Time (DST) is defined as the necessary deceleration to reach a non-negative PET value 
if the movements of the conflicting road users remain unchanged. The definitions and 
calculation of conflict indicators are presented in previous work by the authors [3][8].  
 

a) 

 

b) 

 
Figure 3 - Calibration of the video camera. Figures a) and b) show the projection of a 
reference grid from the world space in a) to image space in b). Reference grid (2.0m 
spacing – 4.0m vertical line) in world space (left) and image space (right) 
 

ANALYSIS AND RESULTS 
 
The analysis of three hours of video was conducted automatically at processing pace of 
approximately one hour of video per day per machine (Pentium Dual Core 1.8 GHz, 2GB 
memory, C++ implementation relying on the OpenCV library). Sample frames with 
superimposed road user tracks are shown in Figure 4. The spatial distribution of traffic conflict 
positions is shown in Figure 5. A conflict position is taken as the location of the conflicting 
vehicle at the moment when there was a minimum time separation from the pedestrian. The 
time separation is measured by TTC as well as GT. There is a discernable change in the 
density of traffic conflicts per unit area and time. The spatial distribution of traffic conflicts 
migrated away from the crosswalks after the scramble phase. The density of traffic conflicts per 
unit area was also reduced.  
 
One of the important contributions in this study is the development of a methodology for 
mapping conflict data into a unitless severity index. Admittedly, every indicator measures 
different severity aspect and there is no unified framework for combining these safety cues. The 
mappings presented later are intended to enable a unified integration of severity cues or 
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information contained in each conflict indicator. Also, different measures can be extracted from 
the severity indices data at different aggregation levels. In the most aggregate form, a single 
unitless severity measure can represent the safety level in a specific treatment period. This 
leads to intuitive interpretation of the results obtained from the video analysis system and 
provide support for further decisions. The mappings and the aggregation strategies proposed 
later are the main novelties of this work. Severity measures are calculated as follows: 
 
Algorithm 1: Algorithm for calculating aggregate severity measures 

Definitions:  1) A traffic events is a data point that comprise the temporal, spatial, typical, and 
safety aspects of a traffic interaction between two road users. 
2) A severity index I is a measure defined over the domain of individual conflict 
indicators that maps from its current value to [0,1], with 1 being the most severe. 
3) A severity measure is a general term for the outcome of different aggregation 
methods that combine information on severities of traffic events. 

Input:  A list of all traffic events and the corresponding set of attributes, such as road users, type, 
location, time, and conflict indicators.  

Output: An aggregate severity measure distributed over time or over road users.  
begin 

1- Create a data structure (struct) that contains the set of all traffic events and their 
attributes. Some attributes of a traffic event are static, e.g. PET, and others are a dynamic 
or function of time, e.g. location. 

2- For all traffic events in struct and for all of their static and dynamic conflict indicators, 

calculate the corresponding severity index 𝐼 using one of the following mappings: 
a. Mapping 1:  

𝐼(𝑇𝑇𝐶 = 𝑥) =∗ 𝑒
−

𝑥

𝑝1           ∀𝑇𝑇𝐶 > 0                     …(2) 

 𝐼(𝑃𝐸𝑇|𝐺𝑇 = 𝑥) = 𝑒−𝑝3∗ 𝑝4∗𝑥+𝑒−𝑝4∗𝑥−1   ∀𝐺𝑇 > 0         …(3) 

𝐼 𝐷𝑆𝑇 = 𝑥 = (1 −
𝑒𝑝5−𝑥

𝑒𝑝5 )
1

𝑝6   ∀𝐷𝑆𝑇 > 0          …(4) 

where 𝑝1: 𝑝6 are specific mapping parameters that define its shape.  

b. Mapping 2: Estimate the Gamma distribution parameters (∝, 𝛽) that represent the 

distribution of conflict indicators. Find the severity index 𝐼 as based on its relative 
frequency in the distribution of all recorded conflict indicators  as follows: 

  𝐼 𝑥 = 1 − 𝛤 𝑥, ∝, 𝛽      …(5) 

where 𝛤 𝑥, ∝, 𝛽  is the cumulative distribution function of the Gamma distribution     

with parameters (∝, 𝛽) and random variable value 𝑥. 
 

3- Calculate the average of all severity indices 𝐼   (mapped from every conflict indicator). 
Ignore conflict indicators that do not report a calculable value.  

4- Create an aggregation table that contains records of the summation of all severity indices 
of all events along one of the following dimensions: 
a. Aggregation per time: for each frame in the video sequence, calculate the 

summation of average severity indices 𝐼   of all extant traffic events. 
b. Aggregation per road user: for each pedestrian road user in struct, calculate the 

summation of 𝐼  of all traffic events in which the road user is involved. 
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Figure 1 - Layout of the pedestrian detection and tracking system. The figure shows the five main layers the make up the 

system. Depicted also is the data flow among system modules from low-level video data to a position database of detected, 

tracked, and classified road users. 
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A depiction of Mappings 1 and 2 are shown in Figure 6. Both mappings are based on observing 
the abnormality of a conflict indicator in comparison to a distribution of typical values for this 
indicator. Mapping 1 relies on subjective assessment of the level of abnormality, or rather 
severity, measured in terms of each conflict indicator. The functional form of Mapping 1 is 
selected to enable flexibility in shape while relying on few parameters, thus relaying the 
definition of the mapping to the issue of parameter estimation. The estimation of parameters 
𝑝1: 𝑝6 can be conducted more rigorously if there is training data. In this study, their selection 
was based on previous experience and subjective assessment. Mapping 2 compares the 
conflict indicator of current event to the distribution recorded for all other events. Mapping 1 was 
used for further analysis. 
 
A summary of results is shown in Table 2. Figure 7 shows the distribution of aggregate severity 
indices for all events in the before as well as after periods. There is a clear and statistically 
significant (paired t-test: p-value 2.0981e-005) reduction in severity per unit time after treatment. 
Figure 9 shows the temporal distribution of aggregate severity measures for the before as well 
as after periods. Figure 9 shows a clear reduction in the magnitude of pedestrian exposure and 
severity of events. While no further analysis of the rich data shown in this figure was attempted, 
it foreshadows the significant level of details (superior to collision records) that can be examined 
using automated safety analysis. Figure 8 shows the distributions of the calculated conflict 
indicators. There is an evident reduction in the frequency of traffic conflicts after the treatment.  
 

  
TTC :1.162 PET :2.8 max DST :7.260 min GT :1.105 TTC :3.318 PET :2.266 max DST :3.355 min GT :1.198 

  
TTC :0  PET :1.53 max DST : 0.0 min GT :0.0 TTC 0 PET 2.07 DST -0.075 GT 2.83 

Figure 4 - Sample frames with automated road user tracks. The captions display 
“Event” the event order in the list of potential interactions, “objects” the numbers of the 
interacting objects, and the indicated conflict indicators.  

 

* The two road 
users are not 
on a collision 
course. 
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CONCLUSIONS AND FUTURE WORK 
 
This study demonstrates the feasibility of conducting before-and-after evaluation of pedestrian 
safety treatments using techniques in the discipline of computer vision. Pedestrian tracking in 
video data is an open problem for which some improvements have been investigated. The 
reliance on motion prototypes demonstrated a clear advantage over classification methods used 
in previous studies. Two three-hour video sequences were analyzed during periods before and 
after the implementation of a scramble phase. Despite the fact that the video analyzed in this 
study was not collected initially for the purpose of automated analysis, tracking accuracy was 
satisfactory. The automated analysis of four conflict indicators shows a reduction in conflict 
frequency and severity. In addition, there was a general reduction in the spatial density of 
conflicts after the safety treatment.  

 

a)

 

b) 

 

Figure 5 - Before-and-after spatial distribution of traffic conflicts. A conflict position is 

selected as the position at which the motorist was separated by a minimum Gap Time 

(GT). Intensities are in number of conflict positions per unit area per first 2 hours. 

An important contribution of this study is the development of an aggregation method that 
integrates various severity aspects represented by different conflict indicators into a single 
unitless index. Another contribution is the development of two aggregation strategies for 
combining individual severity indices into severity measures that represent the underlying safety 
level. This lays the groundwork a new paradigm of measuring road safety in using mixed 
objective cues and also in terms that can directly and intuitively represent the underlying level of 
road safety.  An important continuation of this work will explore methods to conduct a 
comparison between the severities of traffic interactions measured by the system against expert 
rating and collision-based measures. The parameter estimation of Mapping 1 can be conducted 
in a more rigorous fashion by estimating these parameters based on data obtained from a larger 
pool of expert opinions. In this paper, a simple average of individual severity indices was 
conducted. There are practical reasons to believe that some indicators are relatively more 
capable of comprehending the severity of traffic events, and therefore should be assigned more 
weight. Again, this represents an important future development.  
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Summary 
Statistic 

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 

S1 S2 S1 S1 S1 S1 S1 S2 S1 S2 S1 S2 
Length 
(min) 

30.08 30.13 29.96 30.27 29.29 30.84 29.79 29.64 30.62 28.23 30.37 29.61 

Exposure 
Events 

24584 27324 24413 24918 19366 18225 5356 5336 6401 6192 13110 15703 

Events 13608 15023 13854 14118 11853 10915 2756 2782 2993 3268 6488 7576 

P
e
r 

 t
im

e
 Mean 5.1 5.2 5.5 5.4 4.5 4.0 0.89 0.87 1.3 1.2 2.6 2.6 

Median 2.5 3.2 3.2 3.2 2.6 2.2 0 0 0 0 0 0 

Mad 2.5 2.9 3.1 3.1 2.6 2.2 0 0 0 0 0 0 

Std 6.7 5.9 7.9 6.7 5.4 5.3 2.3 3.1 5.9 3.32 7.4 6.3 

P
e
r 

p
e
d

 Mean 0.62 0.67 0.69 0.67 0.80 0.73 0.17 0.16 0.20 0.17 0.27 0.29 

Median 0.037 0.17 0.05 0.054 0.23 0.19 0 0 0 0 0 0 
Mad 0.037 0.17 0.05 0.054 0.23 0.19 0 0 0 0 0 0 
Std 1.1 1.0 1.2 1.1 1.3 1.1 0.49 0.52 0.63 0.55 0.70 0.71 

S# is the number of the analyzed half-hour, Exposure Events is the number of pedestrian-vehicle 
events in which the former was exposed to the risk of collision (decreasing relative velocity and 
minimum spacing < 10m), Events is the number of events with at least one calculable conflict indicator, 
per time is the results category with statistics aggregated over time, per ped is the results category 
with statistics aggregated over pedestrians, Mad is median absolute deviance. 

Table 2 Summary of before-and-after statistics (3 hours before and 3 hours after) 

 

Figure 6 – A depiction of two mappings from conflict indicators to severity index. Shown 

also are the parameters used for the shown mapping depictions (Mapping 1: Algorithm 

1). Mapping parameters (p1:p6) are shown in the legend. For example p1 = 2.5.  
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Figure 7 – Distribution of aggregate severity measures (summation of severity indices) 
for before and after. Vertical lines show the 85th percentile values for the severity 
measures. 
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FIGURE 8 - Distribution of different conflict indicators values for before and after scramble phase. Analyzed 
video durations are 3 hours before and 3 hours after. |PET| and |GT| are the moduli (unsigned) values of the Post 
Encroachment Time and Gap Time conflict indicator. 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Histogram of Before-and-After TTC 

TTC in sec

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

 

 

TTC Before

TTC After

-2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

DST in m/sec
2

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Histogram of Before-and-After DST 

 

 

DST Before

DST After

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

PET in sec

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Histogram of Before-and-After PET 

 

 

PET Before

PET After

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

|PET| in sec

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Histogram of Before-and-After |PET| 

 

 

|PET| Before

|PET| After

-5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

GT in sec

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Histogram of Before-and-After GT 

 

 

GT Before

GT After

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

|GT| in sec

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Histogram of Before-and-After |GT| 

 

 

|GT| Before

|GT| After



Ismail, Sayed, and Saunier      

 

Proceedings of the 20th  Canadian Multidisciplinary Road Safety Conference, Niagara Falls, Ontario, June 6-9, 2010                           ,          
  Compte-rendu de la 20e  Conférence canadienne multidisciplinaire sur la sécurité routière, Niagara Falls, Ontario, 6-9 juin 2010                  14 

 

 

 

Figure 9 – Temporal distribution for the number of exposure events (first row) and the aggregate severity measures (second row). 

There is a significant difference in the 85th percentile (red line) value between the before and after (Exposure before: 63 events, 

exposure after 21 events Severity before 10.19 and severity after 2.576). 

0 50 100 150 200
0

100

200

300

400

500

time in min

A
g
g
re

g
a
te

 S
e
v
e
ri
ty

Temporal Distribution of Exposure Events for BEFORE

0 50 100 150 200
0

100

200

300

400

500

time in min

A
g
g
re

g
a
te

 S
e
v
e
ri
ty

Temporal Distribution of Exposure Events for AFTER

0 50 100 150 200
0

10

20

30

40

50

60

time in min

A
g
g
re

g
a
te

 S
e
v
e
ri
ty

Temporal Distribution of Severiry Index for BEFORE

0 50 100 150 200
0

10

20

30

40

50

60

time in min

A
g
g
re

g
a
te

 S
e
v
e
ri
ty

Temporal Distribution of Severiry Index for AFTER

N
u
m

b
e

r 
o

f 
E

v
e

n
ts

 

N
u
m

b
e

r 
o

f 
E

v
e

n
ts

 



Ismail, Sayed, and Saunier      

 

Proceedings of the 20th  Canadian Multidisciplinary Road Safety Conference,  
Niagara Falls, Ontario, June 6-9, 2010                     ,          

  Compte-rendu de la 20e  Conférence canadienne multidisciplinaire sur la sécurité routière, 
    Niagara Falls, Ontario, 6-9 juin 2010                                                                         15 

 

REFERENCES 
 
[1] Greene-Roesel, R., Diogenes, M.C. and Ragland, D., Estimating Pedestrian Accident 
Exposure: Protocol Report. Institute of Transportation Studies. UC Berkeley Traffic Safety 
Center. s.l. : California PATH, 2007. p. 14. 
[2] Saunier, N. and Sayed, T., "Automated Road Safety Analysis Using Video Data." 
Transportation Research Record, Washington, DC, 2007 : Transportation Research Board, 
2007, Vol. 2019, pp. 57-64. 
[3] Ismail, K., et al., "Automated Analysis of Pedestrian-Vehicle Conflicts Using Video Data." 
Transportation Research Record: Journal of the Transportation Research Board, Washington, 
DC : s.n., 2009, Vol. 2140, pp. 44-54. 
[4] Chae, K. and Rouphail, N. M., "Empirical Study of Pedestrian-Vehicle Interactions in the 
Vicinity of Single-Lane Roundabouts." 2008. Transportation Research Board Annual Meeting 
Compendium of Papers. 08-2898. 
[5] Chin, H.C. and Quek, S.T., "Measurement of traffic conflicts." Safety Science , s.l. : Elsevier, 
1997, Vol. 26, pp. 169–185. 
[6] Svensson, Å. and Hydén, C., "Estimating the severity of safety related behaviour." Accident 
Analysis and Prevention, 2006, Vol. 38, pp. 379-385. 
[7] Bechtel, A., MacLeod, K. and Ragland, D., Oakland Chinatown Pedestrian Scramble: An 
Evaluation. UC Berkeley Traffic Safety Center. 2003. Final Report. 
[8] K. Ismail, T. Sayed, N. Saunier., "Automated Analysis of Pedestrian-vehicle Conflicts: A 
Context for Before-and-after Studies." Washington, DC. : TRB, 2010. Transportation Research 
Board Annual Meeting. 
[9] Turner, S., et al., " Motorist Yielding to Pedestrians at Unsignalized Intersections." 
Washington, DC : Transportation Research Record No. 1982, 2006. 
[10] Gårder, P., "Pedestrian Safety at Traffic Signals: A Study Carried Out with the Help of a 
Traffic Conflicts Technique." Accident Analysis and Prevention, 1989, Vol. 21, pp. 435-444. 
[11] Malkhamah, S., Miles, T. and Montgomery, F., "The development of an automatic method 
of safety monitoring at Pelican crossings." Accident Analysis and Prevention, 2005, Vol. 37, pp. 
938-946. 
[12] Hua, J., et al., "San Francisco PedSafe II Project Outcomes and Lessons Learned." 
Washington, DC : TRB 88th Annual Meeting Compendium of Papers DVD, 2009. 
[13] Forsyth, D.A., et al., "Computational Studies of Human Motion: Part 1, Tracking and Motion 
Synthesis." Foundations and Trends in Computer Graphics and Vision, 2005, Vol. 1, 77-254. 
[14] Saunier, N. and Sayed, T., "A feature-based tracking algorithm for vehicles in 
intersections." s.l. : IEEE, 2006. 
[15] Saunier, N., Sayed, T. and Lim, C., "Probabilistic Collision Prediction for Vision-Based 
Automated Road Safety Analysis." Seattle : 10th International IEEE Conference on Intelligent 
Transportation Systems, 2007. 
[16] Vlachos, M., Kollios, G. and Gunopulos, D., "Elastic Translation Invariant Matching of 
Trajectories." Machine Learning, 2005, Vol. 58, pp. 301-334. 
[17] Saunier, N., Sayed, T. and Ismail, K., "An Object Assignment Algorithm for Tracking 
Performance Evaluation." 2009. Eleventh IEEE International Workshop on Performance 
Evaluation of Tracking and Surveillance (PETS 2009). pp. 9-16. 
[18] K. Ismail, T. Sayed, and N. Saunier., "Camera Calibration for Urban Traffic Scenes: 
Practical Issues and a Robust Approach." Washington, DC : Transportation Research Board 
Annual Meeting Compendium of Papers, 2010. 


