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Abstract. In this paper, we derive an incremental learning algorithm from a difficult
real world task. Our application learns how to evaluate the risk of collision for road
users at intersections, based on occupation measurements supplied by video sensors.
The data are noisy and complex, and only a human expert can evaluate the risk on
video recordings. In order to avoid arbitrary labeling, theexpert is allowed to give
fuzzy labels.

The performance of classical batch passive learning is not satisfying for our appli-
cation. In order to improve, we were inspired by active learning and ensemble meth-
ods. The strong sequential ordering of the data entails a stream-based incremental
learning. We present an original approach based on an activelearner who selects a
subset of the labeled data and combines by vote the hypotheses learnt during the in-
cremental process.

1 Introduction

The work described in this paper meets the needs of a real world application. We study road
safety in signalized intersections. For that purpose, we investigate new safety indicators of the
risk for road users (see [1] for more details). We detect somecategories of vehicle interac-
tions and evaluate their severity, defined as the distance tothe potential accident. Vehicles are
interacting if they are ”close” enough in time and space, andthe closer they are, the higher the
severity. The severity of an interaction can be estimated through different measurable indica-
tors [2] and the calibrated judgement of human experts. Thispaper deals with the learning of
severity indicators based on images of the traffic at the intersection.

The input data are measurements of the spatial occupation ofthe intersection, supplied by
multiple video sensors. The data and the traffic scenes were recorded in a complex real inter-
section over a period of 8 months. As real world data, they arecomplex and noisy (cf Fig. 1).
As far as we know, there exists no automatic device to estimate the severity indicators. In our
application, only a human expert can supply us with severitylabels by watching the videos
corresponding to the data. On account of the constraint of browsing VCR video tapes, we
access the data sequentially. Our methods apply to an onlinesetting.

Three entities interact in the learning of a classification task: anexpert, a learner and a
learnthypothesis. Our description is inspired by [3]. Running a given algorithm, a learner is
able to produce a hypothesis as close as possible to the target concept, here the severity of
vehicle interactions. In classical learning tasks, the learner passively receives instances of the
target concept, labeled by the expert (cf Fig. 2).
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Figure 1: Video images and input data, with 2 detected interactions. The data are simplified for readability when
printed in black and white. Each unit can be in 6 states, instead of 3 states in this figure: presence of moving
vehicle covers presence of moving vehicle, trace of presence, beginning of presence and end of presence.

Figure 2: The learner is passive in the classical learning setting.

The human expert can only distinguish a few discrete levels of severity. In addition to
the inherent human errors [4], it is hard to label instances which are close to some class
boundaries. Using progressive transitions between classes is more adapted to the task. We
can use membership functions to describe the classes identified by the expert. In order to
avoid arbitrary labeling, the expert is allowed to label theinstance as belonging with equal
possibility to the neighboring classes: these labels are called fuzzy labels.

After studying and labeling some data, we noticed that some classes are very intricate
and even overlap. Input data can be really close and at the same time differently labeled
without hesitation by the expert. The classes are unbalanced. All these features of the data and
their labels create a difficult learning problem, yielding relatively poor results with classical
batch learning, where the passive learner uses a fixed set of input data only once to build a
hypothesis.

In the batch setting, the learning set is randomly sampled from the underlying population,
assuming simply that the distribution of the data is independent and identical [3, 5]. In the
non-batch setting, calledincremental, the learning process goes through more than one stage.
In particular, in the stream-based setting, the learner hasto make decisions and update the
output hypothesis after each incoming instance. Learning incrementally allows the learner to
make an intelligent data selection, without knowing the data distribution, and to specify the
boundaries between the classes. In order to improve the results of our application, we want to
select the most informative data to optimize the boundaries, especially between the intricate



classes. To achieve this, we give control of the learning process to the learner to incrementally
build a hypothesis. This is one of the definitions of the active learning framework.

Figure 3: The active learner can ask the expert questions.

Active learning has mostly concentrated on membership queries, where the learner is al-
lowed to query the expert for the class membership of certaininstances (cf Fig. 3). Most active
learning algorithms deal with the pool-based setting [3, 4,6, 7, 8, 9, 10, 11, 12], in which the
learner is presented with a fixed pool of unlabeled instances. For each step the learner chooses
at least one instance from the pool to be labeled by the expert. The expert then provides the
learner with the true label of this instance and the learner induces a hypothesis based on all
the labeled instances seen so far. In our application, the data are accessed sequentially, which
leads us to consider a variant, the stream-based setting [10, 13, 14]. In this setting, the learner
is presented with a stream of unlabeled instances. For each incoming instance, the learner
has to choose whether to ask the expert to label it or not. Withrespect to the existing active
learning algorithms, we introduce the possibility of usingthe labeled instances for learning.
This addition is not specific to the stream-based setting. The difference with the pool-based
setting is highlighted in Fig. 4.

Figure 4: At timet, the learner can selectanyunlabeled instance, whereas in the stream-based setting, the learner
is restricted to thecurrent instance.

In this active learning framework we aim at selecting a subset of the data stream for learn-
ing in order to improve the results with respect to classicalbatch learning. We are not planning
to reduce the number of labeled instances, but rather to enhance the learner performance for a
fixed labeled set. Not using all labeled instances for training can seem to be counter-intuitive.
However, we show that it can help in an application where the classes overlap.

Moreover incremental learning algorithms can provide us with intermediate results during
the learning process (”anytime” algorithms), and with solutions to update hypotheses in the
case of temporally evolving data. We plan to investigate these directions in future work. In



the remainder of this paper, we describe the main algorithmsand criteria to select the data
(part 2), then evaluate our method in a real world application (part 3).

2 Stream-Based Incremental Algorithms for Data Selection

2.1 Generic Description

The generic principle of stream-based incremental algorithms for data selection is described
in algorithm 1. The core of such an algorithm is the criterionfor data selection. A first possi-
bility consists in selecting the data before their labeling. In this case, an obvious idea would
be to adapt active learning algorithms in the pool-based setting to the stream-based setting,
by adding a threshold. In the pool-based setting, criteria try to optimize different measures.
Uncertainty samplingselects the instance on which the current hypothesis has lowest cer-
tainty [12]. Query-by-Committeeselects instances that maximize the disagreement among a
committee of hypotheses [9, 10, 11]). Other works aim at reducing the size of the version
space [3, 15]. None of these methods directly optimize the metric by which the learner will
be ultimately evaluated, i.e. the learner’s expected errors on future test sets, which can be
estimated with the current learner and data sampling [7].

Algorithm 1: Stream-Based Incremental Algorithm for Data Selection.
Input : Let A be the component learning algorithm

Let xt ∈ X be the instance available at timet

Let yt ∈ Y be the (unknown) class ofxt

Let S = [x1≤t≤N ] be a stream of data
Let Li = {(xt, yt)} be the learning set after the selection ofi labeled instances
Let hi : X → Y be the output hypothesis after runningA onLi

Output : Final hypothesishfinal.

begin
Labelt0 instances fromS and put them inL0

RunA onL0 with output hypothesish0

t = t0 + 1; i = 0
repeat

if SelectionCriterion(xt, hi, Li) satisfiedthen
i = i + 1
Li = Li−1 ∪ {(xt, yt)} (yt is obtained inSelectionCriterion)
RunA onLi with output hypothesishi

t = t + 1
until StoppingCriterion

end

In the pool-based setting, the active learning algorithm will query the expert for the label
of the instance(s) of the pool minimizing or maximizing one of these measures. It is straight-
forward to adapt these criteria in the stream-based settingwith a threshold: for example,
select the current instancext if the hypothesis confidence in its prediction is below a certain
threshold. A major drawback of such adapted criteria is the tedious tuning of a threshold, and
thus its lack of robustness for different tasks. Another possibility is to select the data once
they are labeled. We present in the next part a criterion based on the misclassified instances.



Apart from the criterion for data selection, the stopping criterion and the choice of the
final hypothesis are important components. These two elements are linked. If the quality of
the hypotheseshi learnt on the training setLi is satisfying, the stopping criterion is not crucial
and the final hypothesis is one of the learnthi. Otherwise, either a good stopping criterion, or
a method to build a satisfying final hypothesis with the numerous hypotheseshi. The present
work is focused on the improvement of the quality of the final hypothesis by combining the
hi. This point is discussed later.

2.2 Criterion for Data Selection

First of all, the instances with fuzzy labels are not used in the work described in this paper. The
expert is hesitating between two classes, and thus these instances bring less information than
the instances that clearly belong to a class, in fact no information concerning the boundaries
between these classes.

Our primary goal is to improve the learning performance for afixed set of labeled in-
stances, not to reduce the number of labeled instances. We choose to ask the expert for the
labels of all incoming instances, then to select the instances that are misclassified by the cur-
rent hypothesis (cf algorithme 2). Learning on misclassified instances has been studied in the
supervised batch setting, e.g. withWindowing[16]. The author attributes the interest of the
technique to the skewing of the true data distribution.Boostingtechniques have the same goal
[17, 18], resampling many times the data sets by focusing on the most difficult to learn. Our
work follows the same principles as Boosting, and can be seenas an extension of Windowing
to the stream-based setting. The idea has also been tried in pool-based active learning [8],
except that the true labels were not known, but guessed by another classifier learnt on the
labeled instances.

We select the misclassified instances in order to distort thereal distribution of the data set
towards difficult areas, areas where differently labeled instances can be very close and areas
that have not been explored yet. A hypothesis learnt on a set in which the instances close to
the boundaries between classes are over-represented should help specify these boundaries, in
a better way than a hypothesis learnt the whole data set. Thisimplies to use only a subset of
the available data.

Algorithm 2: Criterion for data selection.
Input : Let (x, y) ∈ X × Y be the couple formed by the current instance and its class

(unknown)
Let Yexpert = Y ∪ {fuzzy labels} be the set of labels the expert can use forx

Let L = {(x, y)} be the current set of training labeled instances
Let h : X → Y be the output hypothesis after runningA onL

Output : Selection ofx.
begin

Query the expert for the labeling ofx: let yexpert be this label
if yexpert ∈ Y andh(x) 6= yexpert then

Returntrue
else

Returnfalse
end



2.3 Stopping Criterion and Final Hypothesis

Once a set of learning labeled instances is selected, how canwe build the final hypothesis
for use ? Most active learning algorithms in the pool-based setting use one of the hypotheses
learnt in the active learning process. It is a reasonable choice as, the more labeled data there
are, the better the performance. In this case, the stopping criterion is not crucial. In most
works, the performance is just plotted with respect to the number of labeled data, and the
reduction in the number of necessary labeled data highlighted. The stopping criterion and the
methods to estimate the true accuracy of the hypothesis, that can be measured on an indepen-
dent test set, are discussed in few papers. [7, 15] highlightthe fact that the true accuracy of
the hypothesis is not available. Even standard methods likecross-validation or leave-one-out
fail to provide reliable true error estimates for an active learner, because the distribution of
the learning set is biased by the active learning process towards difficult instances, and thus
is different from the true distribution of the data. [7] introduces an indirect empirical estima-
tor, the Classification Entropy Maximization, and [15] usesfeatures specific to their SVM
hypotheses, i.e. the number of new instances that become support vectors.

Algorithm 3: Incremental stream-based algorithm for the selection of learning data with
the selection criterion of algorithm 2 and the notations of algorithm 1.

Input : Let V otei1,i2(hj) be the hypothesis obtained by taking majority votes over the
predictions of{hj | i1 ≤ j ≤ i2}
Let n be the number of hypotheses used in theV ote

Output : Final hypothesishfinal = V otemax(0,i−n),i(hj).

begin
Labelt0 instances fromS and put them inL0

RunA onL0 with output hypothesish0

t = t0 + 1; i = 0
repeat

if SelectionCriterion(xt, V otemax(0,i−n),i(hj), Li) satisfiedthen
i = i + 1
Li = Li−1 ∪ {(xt, yt)} (yt is obtained inSelectionCriterion)
RunA onLi with output hypothesishi

t = t + 1
until StoppingCriterion

end

However, if the performance doesn’t constantly grow as a function of the number of se-
lected learning data, a good stopping criterion has to be found. As we have seen, the evalua-
tion of the performance of the current hypothesis in the active learning process is a difficult
problem. It is possible to use an independent validation set. We focus on improving the qual-
ity of the learnt hypotheses. A solution is to build the final hypothesis as a combination of the
hypotheses learnt during the learning process. [17] shows that such methods are more robust
and accurate than its base learning method, especially whenthese base methods are unstable,
i.e. sensitive to the learning sets. For example,BaggingandAdaboostare used in conjunction
with query by committee in [9]. We suggest obtaining the finalhypothesis by taking majority
votes over the predictions of the set of the hypotheses builtduring the learning process, or a
subset of it. We preferentially use the most recently learnthypotheses because they are learnt



on the biggest learning sets. For the same robustness reasons, the hypothesis used in the se-
lection criterion is a combination of the previously learnthypotheses. The new version of the
algorithm is formally presented in algorithm 3. The tuning of the numbern of hypotheses
combined byVoteis discussed with respect to the application in the next part.

3 Evaluation on Real World Data

3.1 Experimental Data

We investigate stream-based algorithms for the selection of training data for a particular ap-
plication, the automatic evaluation of the severity of vehicle interactions in an intersection.
For this paper, we work on a specific severity indicator, a speed indicator, but our approach
can be applied to any severity indicator.

The data come from an experiment run over a period of 8 months.The input data come
from measurements of the spatial occupation of the intersection. The surface is divided into
discrete units which indicate then the presence and dynamics of moving vehicles over a period
of one second. These units can be in 6 different states (cf Fig. 1). The input vector of such
units, i.e. the image of the intersection, have different sizes depending on the intersection. In
this paper, we work with data coming from one intersection, and the input vectors are 80 units
long. The expert identified 3 speed levels, minimum, medium and maximum (MIN, MED and
MAX), and 2 progressive transitions between the MIN and MED classes, the MED and MAX
classes, corresponding to the fuzzy labels ”MIN-MED” and ”MED-MAX”. The instances in
the MED class are significantly more numerous than the instances of the two other classes
and the instances of the MAX class are the most difficult to discriminate. This class holds the
most severe interactions and therefore the most interesting for our road safety application.

We made the following evaluation with 3 different sets. We first completely labeled a
sequence of dataS, of about 30 minutes, yielding 510 instances among which 103instances
have fuzzy labels and are not used for learning. We built a test set out of 4 sequences of 10
minutes, with different traffic conditions, 2 dense and 2 fluid, yielding 541 instances, among
which 170 have fuzzy labels and are not used for testing. Last, we draw randomly from a
third set for each active learning trial 3 instances, one foreach class, for the initial learning
setL0. This constitutes a local learning with respect to the wholeavailable database gathered
over a period of 8 months. Other techniques will be necessaryto apply this work to all the
data, particularly to monitoring the performance.

As hypothesis, we take a naive Bayes classifier because its performance in classical batch
learning is better than the other tested hypotheses, even though the assumption of attribute in-
dependence is violated. The learning can be incremental andis computationally inexpensive.
We use the implementation of the Weka toolbox [19].

3.2 Experimental Results

We first investigate the tuning ofn (cf algorithm 3). We observe that the performance is
sensitive ton. We choosen = 7, and notice that the performance worsens for other values.

We compare the performance of the final hypothesis built by our algorithm 3 called MC
(selection ofMisClassified instances) at each instantt with the performance of hypotheses



learnt on the instances of the setSt = {xt′ ∈ S|t′ ≤ t}, the set of incoming instances seen
until t:

”algorithm” BATCH : the hypothesis is simply learnt onSt,

”algorithm” BAGGING : the hypothesis is learnt by Bagging onSt, based onn naive Bayes
classifiers each learnt on a random subset ofSt, containing as many instances asLi, the
set of instances selected by MC,

”algorithm” BATCH-EQ : the hypothesis is learnt on a random subset ofSt with a balanced
class distribution,

”algorithm” BATCH-EQ-MC : the hypothesis is learnt on a random subset ofSt, with the
same class distribution asLi.
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Figure 5: Learning curves of the algorithms MC, BATCH and BAGGING, as a function of the number of
instances selected by MC;Top: Percentage of correctly classified instances for the 3 algorithms;Bottom left:
Percentage of correctly classified instances belonging to the class MAX for the 3 algorithms;Bottom right :
Precision with respect to the class MAX for the 3 algorithms.All values are estimated on the test set, averaged
over 50 trials, with error bars (diluted do avoid clutter).

We compare BATCH and MC to show that it is possible to improve the performance
by selecting a subset of the instances for learning. BAGGINGcombines hypothesis in the
same way as MC for the final hypothesis. We thus want to show that MC actually selects
instances that are more informative than those obtained by random sub-sampling. We also
want to analyse the way MC works, in particular check if it is linked to a readjustment of the



class distribution. For that purpose, we compare MC to BATCH-EQ and BATCH-EQ-MC,
which is not a challenging algorithm since it requires the class distribution of the learning set
selected by MC.

We plot the learning curves of MC and its challengers BATCH and BAGGING in Figure 5.
Our algorithm performs best among the tested algorithms forthe last third of the learning
process (after 80 selected instances). However the performance is worse among the tested
algorithms for the beginning of the learning. It is interesting to notice the quasi-regular in-
crease in the performance of MC after random starts. Since wewant to improve the results
independently for all classes, we also show the results for the MAX class in Figure 5. The
accuracy of the hypotheses produced by MC is better than thatof the hypotheses built by the
other tested algorithms, for the last third of the learning.The difference in precision1 among
the tested algorithms are not significant. Our algorithm performs well after the selection of a
minimum number of instances.

BATCH BAGGING BATCH-EQ BATCH-EQ-MC MC
CC 63,3± 0,4 65,9± 0,7 58,5± 2,2 63,3± 1,1 67,3± 1,6

CC (MIN) 83,1± 0,8 82,5± 1,0 84,2± 1,7 82,8± 1,7 74,9± 2,5
Pr (MIN) 51,2± 0,7 56,6± 1,5 47,3± 2,2 53,0± 1,9 64,9± 3,3

CC (MED) 59,5± 0,4 65,4± 1,0 48,0± 4,5 56,7± 1,8 69,0± 2,4
Pr (MED) 76,4± 0,4 75,2± 0,8 78,0± 2,9 78,0± 1,1 75,5± 1,8

CC (MAX) 58,9± 1,1 56,5± 1,9 64,0± 4,9 64,7± 2,2 59,2± 4,3
Pr (MAX) 55,2± 0,5 57,6± 1,3 49,4± 2,9 53,7± 1,5 55,1± 2,8

Table 1: Percentage of Correctly Classified instances (CC) and Precision (Pr) at the end of the streamS, global
and independently per class (averaged over 50 trials with random initialization ofL0). For each line, the best
performance appears in boldface.Top: Comparison of MC with BATCH and BAGGING;Bottom: Comparison
of MC with BATCH-EQ and BATCH-EQ-MC

We present in table 1 the performance of the final hypothesis built by the 5 algorithms.
We let MC run until the end ofS is reached. The average number of selected instances is
136± 5, among 407 instances. In both tables, MC has the best global accuracy, and performs
best for 2 class results. It is close to the best in 2 other cases, and significantly worse in 2
cases, the percentage of correctly classified instances of the class MIN and MAX. However,
the other algorithms are better at the expense of the precision for the same classes which is
much lower than that of MC. Although this is a difficult task, we observe that our algorithm
MC has constant gains over the other algorithms. In particular, we show that selecting a
subset of the learning instances can improve the performance. Random selection, a simple
readjustment or the random skewing of the class distribution are not enough. Our algorithm
selects informative instances that improve the quality of the learnt hypotheses.

1The precision of a hypothesis on a test set for a class is defined as the number of correctly classified
instances of this class, over the number of instances classified by the hypothesis in this class. This criterion and
the ration of correctly classified instances for the same class are complementary, since the latter can be very
high, but the precision poor is the hypothesis classifies allinstances in the class.



4 Conclusion

In this paper, we investigated stream-based algorithms forthe selection of learning instances.
We give the context, and present a solution based on misclassified instances and combination
by vote of hypotheses for robustness.

We test our algorithm in a real world application, the evaluation of the severity of vehicle
interactions in intersections. The results are promising.We show that our algorithm improves
the global performance, and for some classes.

In the future, we plan to investigate the importance of the initialisation of the learning set.
We would like to explore the possibilities offered by the fuzzy labels and the metrics of the
target concept. We are also interested in other ensemble methods like boosting, which has
similarities with our algorithm.
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