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Abstract. In this paper, we derive an incremental learning algorithomtf a difficult
real world task. Our application learns how to evaluate ible of collision for road
users at intersections, based on occupation measurenugpltesl by video sensors.
The data are noisy and complex, and only a human expert camagévahe risk on
video recordings. In order to avoid arbitrary labeling, thepert is allowed to give
fuzzy labels.

The performance of classical batch passive learning isatisifging for our appli-
cation. In order to improve, we were inspired by active l@zgrand ensemble meth-
ods. The strong sequential ordering of the data entailsearsttbased incremental
learning. We present an original approach based on an detwrer who selects a
subset of the labeled data and combines by vote the hypethezat during the in-
cremental process.

1 Introduction

The work described in this paper meets the needs of a reafl\pglication. We study road
safety in signalized intersections. For that purpose, westigate new safety indicators of the
risk for road users (see [1] for more details). We detect soategories of vehicle interac-
tions and evaluate their severity, defined as the distanitetpotential accident. Vehicles are
interacting if they are "close” enough in time and space,thetloser they are, the higher the
severity. The severity of an interaction can be estimatezlithh different measurable indica-
tors [2] and the calibrated judgement of human experts. péper deals with the learning of
severity indicators based on images of the traffic at thesetdion.

The input data are measurements of the spatial occupatibe aftersection, supplied by
multiple video sensors. The data and the traffic scenes weoeded in a complex real inter-
section over a period of 8 months. As real world data, thexaneplex and noisy (cf Fig. 1).
As far as we know, there exists no automatic device to estihat severity indicators. In our
application, only a human expert can supply us with sevéaibels by watching the videos
corresponding to the data. On account of the constraint@f/fing VCR video tapes, we
access the data sequentially. Our methods apply to an aditiag.

Three entities interact in the learning of a classificatiskt anexpert alearnerand a
learnthypothesisOur description is inspired by [3]. Running a given aldumit, a learner is
able to produce a hypothesis as close as possible to the tangeept, here the severity of
vehicle interactions. In classical learning tasks, theneapassively receives instances of the
target concept, labeled by the expert (cf Fig. 2).

*This work is part of a PhD thesis supported by the régiorddeFrance.



/" A human expert watches the \ [~ The images resulting from video processing N
video and estimates the severity are used for the application.
of vehicle interactions.
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Figure 1: Video images and input data, with 2 detected ioteyas. The data are simplified for readability when
printed in black and white. Each unit can be in 6 states, &ustd 3 states in this figure: presence of moving
vehicle covers presence of moving vehicle, trace of presdreginning of presence and end of presence.
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Figure 2: The learner is passive in the classical learnittqnge

The human expert can only distinguish a few discrete levekewerity. In addition to
the inherent human errors [4], it is hard to label instancegclware close to some class
boundaries. Using progressive transitions between dassmore adapted to the task. We
can use membership functions to describe the classesfiddriy the expert. In order to
avoid arbitrary labeling, the expert is allowed to label hgtance as belonging with equal
possibility to the neighboring classes: these labels dledchuzzy labels.

After studying and labeling some data, we noticed that solaEses are very intricate
and even overlap. Input data can be really close and at the same differently labeled
without hesitation by the expert. The classes are unbatadthese features of the data and
their labels create a difficult learning problem, yieldirgatively poor results with classical
batch learning, where the passive learner uses a fixed sepuaff data only once to build a
hypothesis.

In the batch setting, the learning set is randomly samptad the underlying population,
assuming simply that the distribution of the data is indeleer and identical [3, 5]. In the
non-batch setting, callddcrementalthe learning process goes through more than one stage.
In particular, in the stream-based setting, the learnetdasake decisions and update the
output hypothesis after each incoming instance. Learmogeimentally allows the learner to
make an intelligent data selection, without knowing theaddistribution, and to specify the
boundaries between the classes. In order to improve thige$our application, we want to
select the most informative data to optimize the boundaeggecially between the intricate



classes. To achieve this, we give control of the learninggss to the learner to incrementally
build a hypothesis. This is one of the definitions of the aclaarning framework.
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Figure 3: The active learner can ask the expert questions.
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Evaluation

Active learning has mostly concentrated on membershipiggievhere the learner is al-
lowed to query the expert for the class membership of ceinatances (cf Fig. 3). Most active
learning algorithms deal with the pool-based setting [8,4,, 8, 9, 10, 11, 12], in which the
learner is presented with a fixed pool of unlabeled instarte@seach step the learner chooses
at least one instance from the pool to be labeled by the expeetexpert then provides the
learner with the true label of this instance and the leam@uces a hypothesis based on all
the labeled instances seen so far. In our application, ttzeatta accessed sequentially, which
leads us to consider a variant, the stream-based setting31@4]. In this setting, the learner
is presented with a stream of unlabeled instances. For e@ciming instance, the learner
has to choose whether to ask the expert to label it or not. W#hpect to the existing active
learning algorithms, we introduce the possibility of usthg labeled instances for learning.
This addition is not specific to the stream-based setting. difierence with the pool-based
setting is highlighted in Fig. 4.
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Figure 4: Attimet, the learner can seleahyunlabeled instance, whereas in the stream-based seftelgarner
is restricted to theurrentinstance.

In this active learning framework we aim at selecting a stibthe data stream for learn-
ing in order to improve the results with respect to clasdesth learning. We are not planning
to reduce the number of labeled instances, but rather taestthe learner performance for a
fixed labeled set. Not using all labeled instances for trgjrian seem to be counter-intuitive.
However, we show that it can help in an application where thgses overlap.

Moreover incremental learning algorithms can provide ubk witermediate results during
the learning process ("anytime” algorithms), and with solus to update hypotheses in the
case of temporally evolving data. We plan to investigatsehdirections in future work. In



the remainder of this paper, we describe the main algorithnascriteria to select the data
(part 2), then evaluate our method in a real world applicefpart 3).

2 Stream-Based Incremental Algorithms for Data Selection
2.1 Generic Description

The generic principle of stream-based incremental allgmstfor data selection is described
in algorithm 1. The core of such an algorithm is the critefimndata selection. A first possi-
bility consists in selecting the data before their labelimgthis case, an obvious idea would
be to adapt active learning algorithms in the pool-baseiihgeto the stream-based setting,
by adding a threshold. In the pool-based setting, criteyiad optimize different measures.
Uncertainty samplingselects the instance on which the current hypothesis hasstover-
tainty [12]. Query-by-Committeselects instances that maximize the disagreement among a
committee of hypotheses [9, 10, 11]). Other works aim at ceduthe size of the version
space [3, 15]. None of these methods directly optimize thiciey which the learner will
be ultimately evaluated, i.e. the learner's expected sroor future test sets, which can be
estimated with the current learner and data sampling [7].

Algorithm 1: Stream-Based Incremental Algorithm for Data Selection.
Input: Let A be the component learning algorithm
Letz, € X be the instance available at time
Lety; € Y be the (unknown) class of
Let S = [x1<:<n] be a stream of data
Let L, = {(x, y;)} be the learning set after the selection &fbeled instances
Leth; : X — Y be the output hypothesis after runniAgn L;
Output: Final hypothesis f;,q.
begin
Labelt, instances front and put them i,
Run A on L, with output hypothesig,
repeat
if SelectionCriterion(xy, h;, L;) satisfiedthen
1=1+4+1
Li = L; 1 U{(z,y:)} (v is obtained inSelectionCriterion)

Run A on L; with output hypothesis;
t=t+1
until StoppingCriterion
end

In the pool-based setting, the active learning algoriththquiery the expert for the label
of the instance(s) of the pool minimizing or maximizing ori¢l@se measures. It is straight-
forward to adapt these criteria in the stream-based settitig a threshold: for example,
select the current instanag if the hypothesis confidence in its prediction is below aaiert
threshold. A major drawback of such adapted criteria ise¢kéus tuning of a threshold, and
thus its lack of robustness for different tasks. Anothersgmkty is to select the data once
they are labeled. We present in the next part a criteriondbase¢he misclassified instances.



Apart from the criterion for data selection, the stoppinigecion and the choice of the
final hypothesis are important components. These two elenzea linked. If the quality of
the hypothesek; learnt on the training sdt; is satisfying, the stopping criterion is not crucial
and the final hypothesis is one of the leaintOtherwise, either a good stopping criterion, or
a method to build a satisfying final hypothesis with the nusnermypotheses;. The present
work is focused on the improvement of the quality of the fingbdthesis by combining the
h;. This point is discussed later.

2.2 Criterion for Data Selection

First of all, the instances with fuzzy labels are not uset@work described in this paper. The
expert is hesitating between two classes, and thus thesaaes bring less information than
the instances that clearly belong to a class, in fact no mé&bion concerning the boundaries
between these classes.

Our primary goal is to improve the learning performance fdixad set of labeled in-
stances, not to reduce the number of labeled instances. Wseho ask the expert for the
labels of all incoming instances, then to select the ingaticat are misclassified by the cur-
rent hypothesis (cf algorithme 2). Learning on misclasgiffsstances has been studied in the
supervised batch setting, e.g. witfindowing[16]. The author attributes the interest of the
technique to the skewing of the true data distributBoostingtechniques have the same goal
[17, 18], resampling many times the data sets by focusindgnemtost difficult to learn. Our
work follows the same principles as Boosting, and can be asam extension of Windowing
to the stream-based setting. The idea has also been triemblrbpsed active learning [8],
except that the true labels were not known, but guessed byanclassifier learnt on the
labeled instances.

We select the misclassified instances in order to distomaéaledistribution of the data set
towards difficult areas, areas where differently labelediances can be very close and areas
that have not been explored yet. A hypothesis learnt on ansghich the instances close to
the boundaries between classes are over-represented stetpecify these boundaries, in
a better way than a hypothesis learnt the whole data set.ifipiges to use only a subset of
the available data.

Algorithm 2: Criterion for data selection.
Input: Let (z,y) € X x Y be the couple formed by the current instance and its class
(unknown)
Let Ye,pere = Y U { fuzzy labels} be the set of labels the expert can usexfor
Let L = {(z, y)} be the current set of training labeled instances
Leth : X — Y be the output hypothesis after runnidgpn L
Output: Selection ofz.
begin
Query the expert for the labeling of let y.,,.,; be this label
if Yeapert € Y @aNdh(x) # Yeupere then
Returntrue
else
Returnfalse

end




2.3 Stopping Criterion and Final Hypothesis

Once a set of learning labeled instances is selected, howvednuild the final hypothesis
for use ? Most active learning algorithms in the pool-bassting use one of the hypotheses
learnt in the active learning process. It is a reasonableetas, the more labeled data there
are, the better the performance. In this case, the stoppitegion is not crucial. In most
works, the performance is just plotted with respect to thenlner of labeled data, and the
reduction in the number of necessary labeled data higldyfithe stopping criterion and the
methods to estimate the true accuracy of the hypothests;dhde measured on an indepen-
dent test set, are discussed in few papers. [7, 15] hightlighfact that the true accuracy of
the hypothesis is not available. Even standard methodsitdss-validation or leave-one-out
fail to provide reliable true error estimates for an actiearher, because the distribution of
the learning set is biased by the active learning procesartsndifficult instances, and thus
is different from the true distribution of the data. [7] iatluces an indirect empirical estima-
tor, the Classification Entropy Maximization, and [15] u$esatures specific to their SVM
hypotheses, i.e. the number of new instances that becorpegwectors.

Algorithm 3: Incremental stream-based algorithm for the selectionarhieg data with
the selection criterion of algorithm 2 and the notationslgbathm 1.
Input: Let Vote,;, ;,(h;) be the hypothesis obtained by taking majority votes over the
predictions of{h; | i1 < j <o}
Letn be the number of hypotheses used inthee
Output: Final hypothesi$ . = Votema(0,i—n),i(h;)-
begin
Labelt, instances front and put them i,
Run A on L, with output hypothesig,
repeat
if SelectionCriterion(zs, Votemaz(o,i—n),i(h;), Li) satisfiedthen
i=1i+1
Li = L; 1 U{(z,y:)} (v is obtained inSelectionCriterion)

Run A on L; with output hypothesis;
t=t+1
until StoppingCriterion
end

However, if the performance doesn’t constantly grow as atfan of the number of se-
lected learning data, a good stopping criterion has to bedoAs we have seen, the evalua-
tion of the performance of the current hypothesis in thevadgarning process is a difficult
problem. It is possible to use an independent validation8etfocus on improving the qual-
ity of the learnt hypotheses. A solution is to build the fingbbthesis as a combination of the
hypotheses learnt during the learning process. [17] shioatsstich methods are more robust
and accurate than its base learning method, especially thiese base methods are unstable,
I.e. sensitive to the learning sets. For exampeggingandAdaboostre used in conjunction
with query by committee in [9]. We suggest obtaining the fimgbothesis by taking majority
votes over the predictions of the set of the hypotheses duiiihg the learning process, or a
subset of it. We preferentially use the most recently lehypbtheses because they are learnt



on the biggest learning sets. For the same robustness sdlkerhypothesis used in the se-
lection criterion is a combination of the previously ledngpotheses. The new version of the
algorithm is formally presented in algorithm 3. The tunirfgfte numbern of hypotheses
combined byoteis discussed with respect to the application in the next part

3 Evaluation on Real World Data
3.1 Experimental Data

We investigate stream-based algorithms for the selecfidraiming data for a particular ap-
plication, the automatic evaluation of the severity of wihinteractions in an intersection.
For this paper, we work on a specific severity indicator, adpadicator, but our approach
can be applied to any severity indicator.

The data come from an experiment run over a period of 8 moiftisinput data come
from measurements of the spatial occupation of the intémsecThe surface is divided into
discrete units which indicate then the presence and dyrsashinoving vehicles over a period
of one second. These units can be in 6 different states (cflffigrhe input vector of such
units, i.e. the image of the intersection, have differem¢sidepending on the intersection. In
this paper, we work with data coming from one intersectiowl, e input vectors are 80 units
long. The expert identified 3 speed levels, minimum, medinchraaximum (MIN, MED and
MAX), and 2 progressive transitions between the MIN and MEd3ses, the MED and MAX
classes, corresponding to the fuzzy labels "MIN-MED” andEBDFMAX”. The instances in
the MED class are significantly more numerous than the iest&of the two other classes
and the instances of the MAX class are the most difficult torthsinate. This class holds the
most severe interactions and therefore the most integefstrour road safety application.

We made the following evaluation with 3 different sets. Wetftompletely labeled a
sequence of daté, of about 30 minutes, yielding 510 instances among whichid§kances
have fuzzy labels and are not used for learning. We built asitsout of 4 sequences of 10
minutes, with different traffic conditions, 2 dense and 2d]yielding 541 instances, among
which 170 have fuzzy labels and are not used for testing., astdraw randomly from a
third set for each active learning trial 3 instances, oneetarh class, for the initial learning
setLy. This constitutes a local learning with respect to the wiawkilable database gathered
over a period of 8 months. Other techniques will be necegsaapply this work to all the
data, particularly to monitoring the performance.

As hypothesis, we take a naive Bayes classifier becauseritsipance in classical batch
learning is better than the other tested hypotheses, eveglithe assumption of attribute in-
dependence is violated. The learning can be incrementakammmputationally inexpensive.
We use the implementation of the Weka toolbox [19].

3.2 Experimental Results

We first investigate the tuning of (cf algorithm 3). We observe that the performance is
sensitive tan. We chooser = 7, and notice that the performance worsens for other values.
We compare the performance of the final hypothesis built byatgorithm 3 called MC
(selection ofMisClassified instances) at each instamntith the performance of hypotheses



learnt on the instances of the sgt= {x, € S|t’ < t}, the set of incoming instances seen
until ¢:

"algorithm” BATCH : the hypothesis is simply learnt ¢,

"algorithm” BAGGING :the hypothesis is learnt by Bagging 8n based om naive Bayes
classifiers each learnt on a random subsef;ptontaining as many instances s the
set of instances selected by MC,

"algorithm” BATCH-EQ :the hypothesis is learnt on a random subsé; ofith a balanced
class distribution,

"algorithm” BATCH-EQ-MC : the hypothesis is learnt on a random subsef;pfvith the
same class distribution ds.
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Figure 5: Learning curves of the algorithms MC, BATCH and BAIBIG, as a function of the number of
instances selected by MTpp: Percentage of correctly classified instances for the 3rigos; Bottom left:
Percentage of correctly classified instances belongingaakass MAX for the 3 algorithmd$Bottom right :
Precision with respect to the class MAX for the 3 algorithilsvalues are estimated on the test set, averaged
over 50 trials, with error bars (diluted do avoid clutter).

We compare BATCH and MC to show that it is possible to imprdwe performance
by selecting a subset of the instances for learning. BAGGH¥@bines hypothesis in the
same way as MC for the final hypothesis. We thus want to shotvMita actually selects
instances that are more informative than those obtaineghgom sub-sampling. We also
want to analyse the way MC works, in particular check if itinked to a readjustment of the



class distribution. For that purpose, we compare MC to BATEX®I and BATCH-EQ-MC,
which is not a challenging algorithm since it requires ttessldistribution of the learning set
selected by MC.

We plot the learning curves of MC and its challengers BATCHBAGGING in Figure 5.
Our algorithm performs best among the tested algorithmshierast third of the learning
process (after 80 selected instances). However the peafarenis worse among the tested
algorithms for the beginning of the learning. It is intenegtto notice the quasi-regular in-
crease in the performance of MC after random starts. Sincevave to improve the results
independently for all classes, we also show the results#®mMAX class in Figure 5. The
accuracy of the hypotheses produced by MC is better tharothlé hypotheses built by the
other tested algorithms, for the last third of the learnifige difference in precisidramong
the tested algorithms are not significant. Our algorithnigeers well after the selection of a
minimum number of instances.

BATCH | BAGGING | BATCH-EQ | BATCH-EQ-MC MC

CC 63,3+ 0,4 | 659+0,7 | 58,5+ 2,2 63,3+ 1,1 67,3t 1,6
CC(MIN) | 83,1+0,8| 82,5+ 1,0| 84,2+ 1,7 82,8+ 1,7 74,9+ 2,5
Pr(MIN) |51,2+0,7| 56,6+ 15| 47,3+ 2,2 53,0+ 1,9 64,9+ 3,3
CC(MED) | 59,5+ 0,4 | 65,4+ 1,0 | 48,0+ 4,5 56,7+ 1,8 69,0+ 2,4
Pr(MED) | 76,4+ 0,4| 75,2+ 0,8 | 78,0+ 2,9 78,0+ 1,1 75,5+ 1,8
CC (MAX) | 58,9+1,1| 56,5+ 1,9 | 64,0+ 4,9 64,7+ 2,2 59,2+ 4,3
Pr (MAX) | 55,2+ 0,5| 57,6+ 1,3 | 49,4+ 29 53,7t 1,5 55,1+ 2,8

Table 1: Percentage of Correctly Classified instances (@€ Paecision (Pr) at the end of the stre&nglobal
and independently per class (averaged over 50 trials withaw initialization ofL). For each line, the best
performance appears in boldfadep: Comparison of MC with BATCH and BAGGIN@ottom: Comparison
of MC with BATCH-EQ and BATCH-EQ-MC

We present in table 1 the performance of the final hypothesisliy the 5 algorithms.
We let MC run until the end of is reached. The average number of selected instances is
136 + 5, among 407 instances. In both tables, MC has the best globatacy, and performs
best for 2 class results. It is close to the best in 2 othersgas®l significantly worse in 2
cases, the percentage of correctly classified instancée alass MIN and MAX. However,
the other algorithms are better at the expense of the poacisi the same classes which is
much lower than that of MC. Although this is a difficult taske wbserve that our algorithm
MC has constant gains over the other algorithms. In padrcwe show that selecting a
subset of the learning instances can improve the perforead®andom selection, a simple
readjustment or the random skewing of the class distribudi@ not enough. Our algorithm
selects informative instances that improve the qualityheflearnt hypotheses.

The precision of a hypothesis on a test set for a class is defisethe number of correctly classified
instances of this class, over the number of instances fitasbly the hypothesis in this class. This criterion and
the ration of correctly classified instances for the samsscéae complementary, since the latter can be very
high, but the precision poor is the hypothesis classifiemsiances in the class.



4 Conclusion

In this paper, we investigated stream-based algorithmihéoselection of learning instances.
We give the context, and present a solution based on mifidalssstances and combination
by vote of hypotheses for robustness.

We test our algorithm in a real world application, the evaaraof the severity of vehicle
interactions in intersections. The results are promisivg show that our algorithm improves
the global performance, and for some classes.

In the future, we plan to investigate the importance of tlitgilisation of the learning set.
We would like to explore the possibilities offered by theZyzabels and the metrics of the
target concept. We are also interested in other ensembleongetike boosting, which has
similarities with our algorithm.
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