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Abstract— The importance of reducing the social and eco-
nomic costs associated with traffic collisions can not be over-
stated. The first goal of this research is to develop a method
for automated road safety analysis using video sensors in order
to address the problem of a dependency on the deteriorating
collision data. The method will automate the extraction of
traffic conflicts (near misses) from video sensor data. To our
knowledge, there is limited research primarily applied to traffic
conflicts. In this paper a method based on the clustering of
vehicle trajectories is presented. The clustering uses a k-means
approach with hidden Markov models and a simple heuristic to
find the number of clusters automatically. Traffic conflicts can
then be detected by identifying and adapting pairs of modelsof
conflicting trajectories. The technique is demonstrated onreal
world video sequences of traffic conflicts.

I. I NTRODUCTION

Traffic safety is one of the major world health problems.
According to the World Health Organization, 1.2 million
people are killed in road traffic crash in 2002, and between 20
millions and 50 millions are injured1. Traffic safety diagnosis
has been traditionally undertaken using historical collision
data. However, there are well-recognized availability and
quality problems associated with collision data. In many
jurisdictions, the quantity and quality of collision data has
been degrading for several years. In addition, the use of
collision records for safety analysis is a reactive approach:
a significant number of collisions has to be recorded before
action is taken. Because of these problems, the observation
of traffic conflicts has been advocated as an alternative or
complementary approach to analyze traffic safety from a
broader perspective than collision statistics alone [1], [2], [3].
The Traffic Conflict Technique (TCT) involves observing and
evaluating the frequency and severity of traffic conflicts atan
intersection by a team of trained observers. Traffic conflicts
are observational situation in which two or more road users
approach each other in space and time to such an extent that a
collision is imminent if their movements remain unchanged.

Traffic conflicts are more frequent than collisions, and
their study can give detailed information about safety. The
technique therefore provides a means for the analysts to
immediately observe and evaluate unsafe driving maneuvers
at an intersection. Whereas monitoring the traffic conflicts
occurring in a given location for a few hours is sufficient to
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assess its safety, the main drawbacks of TCTs are the collec-
tion cost, the subjectivity and reliability of observers. Traffic
conflicts are manually registered by human observers in the
field or by watching video recordings. This can be solved
by using video sensors and computer vision techniques to
analyze automatically the video data flow.

The goal of this research is to implement a complete
system to interpret vehicle interactions and detect traffic
conflicts in real world video data. The emphasis is on
building a generic, robust and low-cost solution for regular
use by traffic safety practitionners. Intersections are crucial
parts of the road networks, especially for traffic safety mon-
itoring. Monitoring intersections faces more problems than
highways. These problems are related to the highly variable
structure of the intersections, the presence of multiple flows
of the vehicles with turning movements, the mixed traffic
that ranges from pedestrians to lorries and vehicles that
stop at traffic lights. Specific classification and occlusion
management techniques are required. Common problems
to highways and intersections include global illumination
variations, multiple object tracking and shadow handling.

Despite the safety implications of such systems, limited
computer vision research is directly applied to road safety,
and especially the detection of traffic conflicts [4], [5], [6],
[7]. This requires a high level understanding of the scene.
Such a system is traditionally composed of two modules.
Vehicles are detected and tracked by a first module. The
reconstituted vehicle trajectories are analyzed by a second
module to detect traffic conflicts. The system presented in
this paper relies on a feature-based tracking method [8], [9].

Traffic conflict detection is achieved with generic machine
learning methods. Vehicle trajectories are sequential data that
are naturally handled by statistical models such as hidden
Markov models (HMMs), and the more general dynamic
Bayesian networks (DBNs) [10], [11]. Traffic conflicts, al-
though more frequent than collisions, are rare events. There-
fore, limited training data are available, and unsupervised
methods to explore the characteristics of real world dynamic
events are needed. However, the goal of this research implies
a precise discrimination of the observations, i.e. the detection
of traffic conflicts among all traffic events. To achieve this,
the supervising of the learning can not be avoided. For
that purpose, methods for semi-supervised learning [12] are
needed. The approach implemented in this research relies on

• the clustering of vehicle trajectories to build good
general models,

• the use of a few traffic conflict instances to identify and
adapt the clusters of the conflicting trajectories, called



conflicting clusters,
• the use of the adapted conflicting clusters to process

new traffic data.

Traffic conflicts are therefore described by more general
models of the conflicting trajectories than what could be
learnt with the available instances. This approach can be seen
as the identification of conflicting vehicle streams.

The contribution of this paper includes a k-means approach
to HMM-based clustering to deal with the variable length
of trajectories, a simple heuristic to find the number of
clusters automatically, and a new method to detect traffic
conflicts. The following section presents some related work.
Section III describes how to cluster trajectories. SectionIV
presents the method for traffic conflict detection, followed
by a demonstration of the approach on real world data in
section V.

II. RELATED WORK

Traffic conflict detection based on video sensors can be
achieved with various methods. One would first try the direct
approach extrapolating vehicle trajectories. The approach
described in [7], [13] detects pairs of vehicles that would
collide if they maintain their current velocities. It employs a
region-based tracking method with background subtraction,
and a novel method for three dimensional vehicle size estima-
tion. Tracking and size estimation appear to be accurate, but
there is no validation of the collision prediction results.[4]
describes an alternative approach based on occupation rates
to evaluate the average probability of accident for a passing
vehicle, but without direct detection of actual events.

The direct approach is likely to have unreliable perfor-
mance because the tracking data are imperfect and noisy.
Such explicit systems, using rules adjusted by trial and
error, rarely provide generic and robust solutions, especially
when the environment and the event patterns change. This
would for example mean to redevelop the system for every
intersection. A better model may be learnt from observation.

A first approach casts the task as a classification problem
for which a classifier can be learnt on instances of each class.
Traffic conflict detection is seen as a binary classification
problem between traffic conflicts and non-conflict interac-
tions. In [6], ”ordinary” traffic vehicle interactions are learnt
with HMMs. An HMM is learnt for each type of activity
to recognize. The results are very limited because there are
very few training instances and the test set is not separate
from the training set.

Traffic conflicts, although more frequent than collisions,
are unusual events, defined by Zhanget al. in [14] as rare and
unexpected. Therefore Zhanget al. conclude that collecting
sufficient training data for supervised learning will often
be infeasible. Furthermore, more than one type of unusual
event may occur in a given data sequence, which implies
that training a single model to capture all unusual events
will generally be a difficult task. In the context of the
increasing availability of raw video data, it is impossibleto
rely on human experts to manually process hours of video

recordings. Supervised learning techniques for sequential
data, like HMMs, require considerable data for the reliable
estimation of their parameters.

That is why unsupervised methods are required to learn
the characteristics of traffic events. Self-Organizing Maps
(SOM) are used in [5] to quantize the vehicle observations
and predict the vehicle movements, which is then applied to
traffic accident prediction. Traffic conflicts can be detected
based on the trajectories of the involved vehicles, i.e. the
sequence of the vehicle positions. There are three categories
of strategy for the clustering of sequential data [15]:

• In sequence similarity, the comparison between two
sequences is viewed as a process to transform a given
sequence into another. An edit distance can be based on
that principle. This is a typical approach in handwritten
recognition, which has also been used for trajectories
clustering in [16].

• In indirect sequence clustering, a set of features is
extracted from the sequences. In this space, classical
vector space-based clustering algorithms can be used.
However, the process causes loss of information and
needs additional knowledge. For example, the leading
Fourier coefficients are used in [17], and are said to
be inherently unsuited for the representation of highly
complex trajectories.

• In statistical sequence clustering, statistical models like
HMMs and more general Dynamic Bayesian Networks
(DBNs) are built to describe the dynamics of each group
of sequences (with nominal or numerical values).

The arbitrary casting of the problem to the traditional fixed
length vector clustering framework is avoided. Sequential
data are treated in a more natural way with stochastic models.
It is stated in [18] that they can well describe traffic events
consisting of a large number of random processes. A DBN
was successfully developed to model moving vehicles in a
complex freeway traffic scene [19].

Some works have already explored statistical sequence
clustering, mainly using HMMs [20], [21], [22], [23].
Most adopt a k-means formulation, which is extended with
soft memberships and applied to video data in [20]. The
key idea of HMM-based clustering is that observations
are defined to be similar in terms of common similar-
ity to a model, expressed through the likelihood function
P (Observation|Model).

Model selection in machine learning, i.e. determining the
model parameters, especially the number of model com-
ponents in HMM-based clustering, remains a complicated
and uncertain process. Sufficient complexity to interpret the
characteristics of the data is needed, but not too much to
avoid the overfitting to the training data, which leads to less
generalization ability to unkown data. A large number of at-
tempts have been made to estimate the appropriate number of
clusters, using heuristics and stopping rules, like the number
of observations presented later. Other methods try to optimize
some criterion functions under a probabilistic mixture-model
framework, such as the Bayesian Inference Criterion [23] and



the Minimum Description Length [20]. However, the results
are not guaranteed, e.g. in some experiments of [20].

A closely related subject is the unsupervised learning of
unusual events [24], [14]. Another related problem is the
unsupervised learning of spatio-temporal activity patterns,
with methods that have been already mentionned, SOM in
[25], HMMs in [26], or clustering of sequences of quantified
features [27].

The supervising of the learning can not be avoided to
detect traffic conflicts among all traffic events. Vehicle tra-
jectories are clustered and HMMs are learnt on each cluster.
These general models are learnt without supervision, and
there is therefore no reason for them to be good models
of conflicting trajectories. That is why a few training traffic
conflict instances are useful to adapt the general models. The
resulting ”conflicting clusters” are more general models of
conflicting trajectories than what could be learnt with the
available training instances. In speech recognition, it isa
traditional method to adapt general HMM to each speaker.
This was used recently for unusual event detection in [14].

III. HMM- BASED CLUSTERING

The input data to the system are vehicle trajectories.
Vehicles involved in traffic conflicts are on a collision
course, i.e. vehicles will collide if their movements continue
unchanged. To decide if two vehicles are on a collision
course, their positions and velocities are required. That is
why velocity estimations are included in the trajectories
descriptions, whereas most other works use the actual vehicle
displacements. A vehicle trajectory is therefore a sequence
of four-dimensions vectors, composed of its coordinate(x, y)
and the velocity(sx, sy) at each time step. An estimation of
the size of the vehicles should be also useful, but it didn’t
improve the results in the experiments. Since the trajectories
obtained through the vehicle tracking algorithm are noisy,
they are smoothed using a moving average filter.

The HMM notation used in the rest of the paper is first
defined. For a detailed overview of HMMs, readers are
directed to [28]. A complete specification of a first-order
HMM with M states{S1, S2, ..., SM} and a simple Gaussian
observation density is formally given by:

• A set of prior probabilitiesΠ = {πi} where πi =
P (q1 = Si), 1 ≤ i ≤ M .

• A set of state transition probabilitiesH = {hi,j} where
hi,j = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ M .

• A set of output distributionsB = {bj} wherebj(ot) =
P (Ot = ot|qt = Sj) = N (Ot, µj , Σj), 1 ≤ j ≤ M ,
whereµj and Σj are the mean and covariance of the
Gaussian of stateSj .

whereqt andOt are respectively the state and observation
at timet. It is common to denote a mixture ofK HMMs by
λm = (Hm, Bm, Πm), 1 ≤ m ≤ K. Algorithms exist to:

• compute the probability of observing a sequence, given
a model.

• find the state sequence that maximizes the probability
of the given sequence, when the model is known (the
Viterbi algorithm).

• induce the HMM that maximizes (locally) the probabil-
ity of the given sequence (the Baum-Welch algorithm,
an expectation-maximization (EM) algorithm).

The clustering algorithm has an overall classical k-means
formulation (see Algorithm 1). The HMMs are initialized in
a standard way: uniform priors and transition matrices are
used, the means and variances of the Gaussian observation
density are estimated using k-means on the observation data.
At each iteration, every trajectory is assigned to the HMM
that maximizes the probability of the trajectory, and the
HMMs are then retrained with their assigned observations.

The number of clustersK is automatically adjusted
through the use of a minimum number of assigned observa-
tions per cluster, in order to ensure a minimum reliability of
the parameters of the HMM. The HMMs that do not satisfy
this condition are discarded. The initial numberKi of HMMs
should be larger than the ”natural” number of clusters of the
data. The learning process stops when the number of clusters
doesn’t evolve anymore for a given number of iterations.

Algorithm 1: Algorithm for the clustering of variable
length sequences with HMMs.

Input : Let λm = (Hm, Bm, Πm), 1 ≤ m ≤ K be a
mixture of K HMMs
Let Ki be the initial number of clusters
Let O = {Oi}, 1 ≤ i ≤ N be a set of
N observations, whereOi is a sequence ofTi

vector observations
let Nmin be the minimum number of observa-
tions assigned to a cluster to keep and retrain
it
Let n be the maximum number of iterations
without a change in the number of clusters

Output : A mixture of Kf HMMs.

begin
Initialize randomlyK = Ki HMMs λm

i = 1
while i ≤ n do

Assign each observationOi to the HMM λmi

that maximizesP (Oi|λm)
Let Oλm

be the set ofNm observations
assigned toλm

Keep only the HMMsλm such that
Nm ≥ Nmin, reset and trainλm with Oλm

if No HMM was discardedthen
i = i + 1

end

IV. D ETECTING TRAFFIC CONFLICTS

The HMM-based clustering algorithm provides a mixture
of K HMMs that model the vehicle trajectories. A few
training traffic conflict instances are used to adapt the gen-
eral models [14]. The parameters of the simple Gaussian
observation density, i.e. the means and covariance matrices,
are adapted. They are estimated according to the maximum



likelihood criterion on the trajectories involved in the training
traffic conflict instances, assigned to each cluster. The well-
known formulas [29] are used to compute the new meansµc

j

and covariance matricesΣc
j of the Gaussian of stateSj , for

a given HMM λm and a set ofN trajectoriesOc:

µc
j =

∑N

i=1

∑Ti

t=1
P (qt = j|Oi, λm)Oi

t
∑N

i=1

∑Ti

t=1
P (qt = j|Oi, λm)

(1)

Σc
j =

∑N

i=1

∑Ti

t=1
P (qt = j|Oi, λm)(Oi

t − µc
j)(O

i
t − µc

j)
T

∑N

i=1

∑Ti

t=1
P (qt = j|Oi, λm)

(2)
The parameters of the HMMλm can then be adapted using

the following equations:

µ
′

j = (1 − α)µj + αµc
j (3)

Σ
′

j = (1 − α)(Σj + (µ
′

j − µj)(µ
′

j − µj)
T )

+α(Σc
j + (µ

′

j − µc
j)(µ

′

j − µc
j)

T ) (4)

where µ
′

j and Σ
′

j are the mean and covariance of the
Gaussian of the stateSj of the adapted HMM.α is a weight-
ing factor that controls the balance between the original
model and the new estimates on the trajectories involved
in the training traffic conflicts. Both the original model and
the adapted model are kept in the set of HMMs used for
detection.

A traffic conflict is an interaction, defined as an obser-
vational situation in which two or more vehicles are close
enough in space and time, and are nearing each other. So
far, the method has built a set of HMMs, among which
some are models of conflicting trajectories. But a trajectory
is conflicting only with respect to another one. It is their
conjunction in time and space that creates a danger of
collision. Therefore, the models of the conflicting trajectories
(to which the trajectories involved in the training traffic
conflict instances are assigned) are memorized by pairs (e.g.
pairs of models 4 and 7, 11 and 2, 3 and 7). The traffic
conflict detection proceeds as follows:

1) Vehicles are tracked.
2) If two vehicles are close enough (threshold on their

distance) and nearing each other (their distance de-
creases), an interaction is detected.

3) Each interacting vehicle trajectory is assigned to a
HMM.

4) If the HMMs of both interacting trajectories were both
memorized as conflicting (e.g. any of the pairs of
models 4 and 7, 11 and 2, 3 and 7), a traffic conflict
between these two vehicles is detected.

V. EXPERIMENTAL EVALUATION

A simple vehicle detection and tracking algorithm is used,
based on the implementation of the KLT feature tracking
algorithm of [8], used in [9]. The advantages of feature-
based algorithms include the abilities to work well under

different lighting and weather conditions, and to handle
partial occlusions, with better results than methods basedon
background differencing and blob tracking. Kevin Murphy’s
toolbox is used for HMMs2.

The evaluation is based on a set of ten traffic sequences
on the same location (see Figure 1), initially used for the
training of traffic conflict observers in the 1980s. Their
length ranges from 10 seconds to 60 seconds. Despite the
videotape aging, the approximate alignment of the field of
view between sequences and occasional camera jitter, it
could be digitized and used to test our method. The training
program highlights nine traffic conflicts in nine sequences
(see Figure 2). However, only five of them are used as
training instances. Another one (fourth sequence) is not used
because the vehicles are not detected anymore at the time
they are really in conflict, and the rest of the traffic conflicts
involve pedestrians and cyclists that are very difficult to
distinguish and track on account of the videotape quality.
There is no traffic conflict highlighted in the last sequence.It
is sometimes difficult to judge the performance of the method
since there is no ground truth, apart from the traffic conflicts
used in the program.

Fig. 1. An image of the traffic sequences.

Fig. 2. An example of trajectories involved in a traffic conflict.

All K HMMs of a mixture have the same structure param-
eter values (number of states, simple Gaussian observation

2http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.
html



density), which are tuned for each cluster of observations
with the algorithm. The trajectories are measured in the
image space and are smoothed with an average moving filter.
HMMs are clustered with a set of560 trajectories from eight
traffic sequences. The trajectories of two sequences are not
used for learning since there are many detection and tracking
errors, caused by camera jitter. They are however used to
test the generalization ability of the method. The set is large
and representative of all trajectories, but small enough to
maintain reasonable computation times. The parametersn

(number of iterations once the number of HMMs doesn’t
change anymore) andNmin (minimum size of the clusters)
are tuned by trial and error respectively to3 and5.
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Fig. 3. The average final numberKf of HMMs, over 10 runs of the
clustering algorithm 1, as a function of the initial numberKi, for different
numbers of statesM .

The Figure 3 shows that for different settings of the
number of statesM for all HMMs, the final numberKf

of HMMs increases as a function of the initial numberKi.
When Ki is superior to a certain value,Kf increases very
slowly, and this value can be seen as the ”natural” number of
clusters to describe the set of trajectories. A value ofM = 3
states seems a good tradeoff for accurate and fast learning.
An observation of the learnt HMMs indicates that the 3
states (the means of the Gaussian observation density) often
correspond to the approach of the intersection, the conflict
zone and the leaving of the intersection. Besides, the stopping
criterion of the algorithm is quickly reached, most discarding
of HMMs occurring at the first iteration of the algorithm,
followed by n more iterations.

An example of the result of the clustering algorithm is
presented in the Figure 4. The figures display the trajectories
assigned to each cluster. The main vehicle streams are
represented, sometimes mixed in the same cluster. Most
adapted HMMs have fewer assigned trajectories than non-
adapted models. However,66 trajectories are assigned to the
largest cluster. The examination of these clusters suggests a
plausible division of the trajectories space, covering different
paths with differing velocities.

The detection results are presented in terms of interactions.
They are computed on all the available data, the trajec-
tories detected in the ten sequences. This is a two-class
classification problem, traffic conflicts against non-conflict
interactions, with two types of errors: false alarms (FA),
when the system accepts a non-conflict interaction, and false
rejections (FR), when the system rejects a traffic conflict.
Designed as the system is, the traffic conflicts used to identify
and adapt the HMMs will always be detected. It is sometimes
difficult to decide upon the other detected traffic conflicts:
some are clearly FA, but some could be real traffic conflicts,
and are counted in their own category. When these uncertain
traffic conflicts are not detected, no FR is counted.

TABLE I

DETECTION RESULTS AS A FUNCTION OF THE WEIGHTING FACTORα,

WHICH CONTROLS THE ADAPTATION OF THEHMM S TO THE TRAFFIC

CONFLICT INSTANCES. ”CD” INDICATES THE NUMBER OF CORRECTLY

DETECTED TRAFFIC CONFLICTS, ”U NCERTAIN TC” THE NUMBER OF

UNCERTAIN TRAFFIC CONFLICTS, AND ”FA” THE FALSE ALARMS. THE

ROW ”α = 0” INDICATES THE RESULTS WITHOUT ANY ADAPTATION.

α CD Uncertain TC FA
”0” 10 17 38
0.05 10 13 6
0.10 10 13 10
0.15 10 12 6
0.20 10 3 3
0.25 10 5 2
0.30 10 5 2
0.35 10 4 1
0.40 10 4 0
0.45 10 4 0
0.50 10 3 0

The tradeoff between adaptation and generalization is
illustrated by studying the performance of a mixture of
HMMs, with different levels of adaptation, controlled by the
weighting factorα. In the Table I, the detection results are
presented for the mixture of HMMs for which the clustered
trajectories are displayed in Figure 4.1501 interactions are
detected. The numbers are quite high because the tracking is
sometimes lost, which increases the number of trajectories
measured, and therefore the number of interactions. This
is also why the five training traffic conflicts instances are
detected as ten interactions. The most striking is the improve-
ment of results between the non-adapted HMMs (”α = 0”)
and the smallest level of adaptation (α = 0.05). It must be
noted that most FA are caused by detection and tracking
errors in one of the test traffic sequences, and not by the
traffic conflict detection method. The system can generalize
as there are no FA for all levels of adaption on the other test
sequence without traffic conflicts.

There seems to be a good tradeoff between adaptation
and generalization forα = 0.15 or 0.2. As the adaptation
is more important, the system becomes very specific to the
training traffic conflicts instances, and is not able anymore
to generalize to unknown data, as it is showed by the overall
decrease of the number of uncertain traffic conflicts. For



Fig. 4. Each image represents the trajectories assigned to each cluster (see Figure 1 and 2 to locate the trajectories in the intersection). The conflicting
adapted clusters are displayed in the last two rows, underneath the horizontal line.

example, the traffic conflict of sequence 4 is detected for
the non-adapted HMMs and forα ≤ 0.15, but not anymore
when the adaptation increases. Such overfitting should be
avoided.

The lack of data and ground truth make this evaluation
difficult, but these results demonstrate the possibility of
detecting traffic conflicts among all interactions with the
presented method, and even generalize to some unseen data.



The system can be made more or less specific according to
the application. Additional experimental material is available
online3.

VI. CONCLUSION AND FUTURE WORK

In this paper a new semi-supervised approach to detect
traffic conflicts is presented, based on the unsupervised
general clustering of trajectories, and their adaptation with
a few training traffic conflict instances. The potential of
such a technique to discriminate traffic conflicts among other
interactions is demonstrated on real world data. It is hoped
that such methods can make significant improvements for
road safety diagnosis.

Improvements to the method can be made at different
levels. The use of simulated traffic data is contemplated
to evaluate on a varied set of controlled situations how
generic the technique is. The method can be refined by
using the labeled data to guide the clustering process and
by investigating more complex DBNs. K-means clustering
is only guaranteed to converge to a local optimum, and
the results are highly dependent on the initialization of the
algorithm. Other clustering techniques such as mean shift
clustering, as well as combining the clustering results can
make the process more robust.
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