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Abstract This paper presents an original time-sensitive traf-
fic management application for road safety diagnosis in sig-
nalized intersections. Such applications require to deal with
data streams that may be subject to concept drift over var-
ious time scales. The method for road safety analysis re-
lies on the estimation of severity indicators for vehicle in-
teractions based on complex and noisy spatial occupancy
information. An expert provides imprecise labels based on
video recordings of the traffic scenes. In order to improve
the performance - overall and for each class - and the sta-
bility of learning in a stream, this paper presents new en-
semble methods based on incremental algorithms that rely
on their sensitivity to the processing order of instances. Dif-
ferent data selection criteria, many used in active learning
methods, are studied in a comprehensive experimental eval-
uation, including benchmark datasets from the UCI Machine
Learning Repository and the prediction of severity indica-
tors. The best performance is obtained with a criterion that
selects instances which are misclassified by the current hy-
pothesis. The proposed ensemble methods using this crite-
rion and AdaBoost have similar principles and performance,
while the proposed methods have a smaller computational
training cost.
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1 Introduction

1.1 Traffic Management Systems

Road traffic management systems (TMS) seek to improve
road traffic flow in urban environments through a better uti-
lization of existing infrastructures. This work targets time-
sensitive applications that must adapt in the short to medium
term respectively at the operational and tactical levels. In-
deed, road traffic management requires at the operational
level to continuously monitor traffic variables (flow, speed
and density) and other potentially disrupting events (inci-
dents), and to continuously make decisions based on the
most recent data. Traffic management also relies on deci-
sion support systems at the tactical level to provide diagnosis
over a longer time frame (in the order of hours to days). In
addition, the traffic data input to TMS shows strong tempo-
ral patterns at different time scales (daily, weekly, seasonal)
but also evolves in time: traffic tends to increase over time,
but is also regularly affected by unforeseen events such as
economic crises. Such data may therefore suffer fromcon-
cept drift, i.e. when data, its distribution and its processing
(interpretation) change over time [18].

In the scope of a research project on advanced traffic
management methods for signalized intersections, we had
access to an experimental intersection where multiple video
sensors are installed and supply a video processing tool.
This tool computes traffic data measurements like occupancy
ratios, queue lengths and traffic flows that are used for sev-
eral traffic management applications such as traffic control,
incident detection, red light running detection and road safety
diagnosis [4, 24, 25]. In this context, we use machine learn-
ing techniques to automatically learn and predict traffic in-
dicators, which take a small number of values (classes).

We favour incremental learning methods because they
are particularly suited for TMS, where the data stream may
be subject to concept drift. Indeed, incremental algorithms
construct a classifier with only one pass over the data and
update the classifier at each step with the new data, without
accessing the data seen previously [36]. The ability to update
classifiers on new data is very advantageous in case of con-
cept drift, instead of forgetting what was learnt previously
or re-training classifiers on the whole augmented dataset.

1.2 Road Safety Diagnosis in Signalized Intersections

This paper focuses on a specific module of our research
project devoted to road safety diagnosis in signalized inter-
sections. Our approach relies on the detection of vehicle in-
teractions and the evaluation of their severity. Vehicles are
interacting if they are close enough in time and space. The
severity, or proximity to a potential collision, is measured

by the spatio-temporal distance between the interacting ve-
hicles, and is related to their probability of collision. Several
severity indicators have been proposed in the road safety lit-
erature [1, 31]. This work relies on a generic method based
on an expert’s judgment.

Our system uses the spatial occupancy measurements of
the experimental intersection provided by the video process-
ing tool as input data. The intersection surface is virtually
covered by a grid, each grid unit covering approximately
one sixth of the size of a standard vehicle. Through video
analysis, each grid unit is assigned one of six possible states
representing the dynamics of the vehicles that passed on the
corresponding part of the roadway over one second (Fig-
ure 1). This data and the video traffic scenes were recorded
for a complex intersection in the suburbs of Paris over a pe-
riod of eight months (Figure 2). The resulting database pro-
vides the data used in this work.

The task is twofold: the detection of vehicle interactions
and the evaluation of their severity. Vehicle interactionsare
detected and categorized by a first rule-based component,
described in [28, 29]. The second component, described in
this paper, predicts a severity indicator (a class of severity)
for each interaction instance on the basis of the examples
labeled by the expert.

Fig. 2 The experimental intersection.

As illustrated in Figure 1, the input is a nominal vec-
tor concatenating the states of all grid units in the conflict,
upstream and downstream zones of the approach with the
green light; based on the vehicle speeds, the severity of the
detected interaction in the example has been labeled as max-
imum by the expert watching the video recordings. Even
though the state of the grid units may seem explicit, the lim-
ited spatio-temporal definition, the fact that vehicles arenot
individually identified and the noise make their interpreta-
tion difficult. Supervised machine learning techniques are
used to tackle these issues and provide robust solutions over
manually tuned rule-based systems.
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Fig. 1 Example of input data, with one detected interaction of the highest severity.

1.3 Proposed Approach

A supervised machine learning task is defined by three com-
ponents [12]: the environment that generates the data, an ex-
pert that supervises and a learner that builds hypotheses (the
term hypothesis is used here as a synonym to classifier).

This paper presents original ensemble methods based on
incremental algorithms in which the learner iteratively se-
lects informative instances in order to improve the classifi-
cation accuracy, overall and for each class. These new meth-
ods rely on a feature of many incremental algorithms: their
sensitivity to the processing order of instances. Most incre-
mental algorithms build different hypotheses if the training
instances are presented in different orders. These hypotheses
can then be combined through a vote. This paper explores
the use of order to create ensembles of classifiers. To the
authors’ knowledge, sensitivity to the processing order of
instances has not been used explicitly in ensemble methods.

The incremental data selection algorithms are introduced
in the next section. After a review of ensemble methods, the
new ensemble methods are presented in section 3. The ex-
perimental evaluation on benchmark datasets and the road
safety application is performed in section 4 and section 5
concludes this paper.

2 Incremental Data Selection in a Stream

2.1 Learning Severity Indicators

As no tracking is performed by the video processing tool, an
early choice was made to interpret the dataxt ∈ X at each
time t, independently from the other instants. This data at
time t contains occupancy information over the period of
time betweent −1 andt which makes it possible to estimate
vehicle dynamics (see Figure 1). The task is to learn how
to associate a severity indicatoryt to eachxt . Based on the
video recordings of the traffic scenes, the judgement of the
expert is uncertain and imprecise. The expert can distinguish
only a few ordered severity levels. LetY be the set of these
levels or classes (yt ∈ Y ). Since evaluating the severity indi-
cator may be difficult, the expert may hesitate and therefore
not be able to label the data, in which case it cannot be used
for learning. Besides, it is observed that instances can look
very similar and be labeled in different classes with certainty
by the expert: there seems to be a significant class overlap.
Finally, the classes are unbalanced, and it is important forthe
application to maintain good performance for each class.

Instances are available only up to timet in a stream,
which defines an online setting [3], as opposed to an of-
fline or batch setting, in which all the data is available. As
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mentioned, incremental algorithms are the natural solution
to deal with data streams, and learning in one pass over the
data is also very appealing when dealing with very large
datasets in batch mode. An algorithm is strictly incremental
if its requirements for memory and per example computa-
tion do not increase with the number of instances [18]. An
incremental algorithm is lossless if it produces a hypothesis
at time t functionally equivalent to the corresponding hy-
pothesis trained on the same data up to timet in one batch.

2.2 First Approach

This section revisits the work presented in [30] that aims
at improving the accuracy of severity indicator prediction.
Given the complexity of the task, in particular the noise in
the data, specific methods are needed to improve the accu-
racy of the hypotheses in difficult parts of the input space,
e.g. where classes overlap at their boundaries: the approach
relies on selecting a subset of the available instances for
learning. Learning with a data stream allows the learner to
make an iterative selection of the most informative instances,
without knowing the data distribution, in order to specify the
boundaries between the classes. A method that selects in-
stances involves an active learner, i.e. a learner that has some
control over the learning process [7, 34]. Data selection ina
stream is thus cast in the active learning framework.

Most active learning algorithms deal with membership
queries, where the learner can select instances and ask an
expert for their labels. Asking for the “right” instances can
greatly reduce the number of labeled instances. Most meth-
ods are applied to the “pool-based” setting, where a set of
unlabeled instances is available from the beginning, and the
learner picks some iteratively for labeling at each step. Many
pool-based algorithms choose instances maximizing or min-
imizing some utility attached to each instance, such as the
confidence of the current hypothesis in its prediction of the
instance class [22]. In the “stream-based” setting, the learner
decides whether to ask or not the label for each incoming in-
stance of the stream. In both settings, an incremental hypoth-
esis learning algorithm is a great advantage since during the
active learning process the hypotheses are iteratively used
for prediction and then updated with the newly labeled in-
stances. In the remainder, the component learning algorithm
A is supposed to be incremental (Naive Bayes is used forA
in our experiments): it builds a hypothesish : X → Y on a
training dataset. If requested, an instance is labeled by the
expert if he can.

Algorithm 1 Generic Simple algorithm

Input : A stream of dataS = [xt ]

A labeled dataset for initializationLinit

Output : Final hypothesish f inal

begin
RunA on Linit with output hypothesish0

t = 0
repeat

if SelectionCriterion(xt,ht) is truethen
(yt ∈ Y is obtained inSelectionCriterion)
Updateht on (xt ,yt) with A to produceht+1

else
ht+1 = ht

t = t +1
until StoppingCriterion
h f inal = ht

end

Algorithm 1 describes a classical generic incremental
learning algorithm for data selection in a stream: in addi-
tion to the learning algorithm, it is characterized by a se-
lection and a stopping criterion. Instances can be selected
either before or after labeling. Instances are selected before
labeling in most active learning approaches, which aim at re-
ducing the number of labeled instances. If the expert cannot
label the instance,SelectionCriterion returns automatically
f alse (this is not repeated in the following selection crite-
ria to simplify their presentation). In the stream-based set-
ting, the most famous technique is the Query-by-Committee
(QBC) [8, 33], which relies on a set, or committee, of hy-
pothesesH.

SelectionCriterion QBC(x,h)
Draw randomly 2 hypothesesh1 andh2 from H.
if h1(x) 6= h2(x) then

ask the expert for the labely of x and returntrue.
else

return f alse.

In the pool-based setting, criteria for data selection of-
ten rely on a definition of the utilityutilityh(x) of a pool
instancex with respect to the current hypothesish. They can
be adapted to the online setting by using a threshold [15] or
biased random decision [8]. A utility commonly used in the
literature is derived from the confidence of a hypothesish on
its prediction for an instancex denotedcon f idenceh(x) and
typically normalized to[0,1]: the objective is to select in-
stances where the hypothesis is uncertain, i.e.utilityh(x) =
1− con f idenceh(x).

SelectionCriterion CT hres(x,h)
if utilityh(x)≥ threshold then

ask the expert for the labely of x and returntrue.
else

return f alse.
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SelectionCriterion CRand(x,h)
Draw a random variablerand following a uniform
distribution on[0,1].
if rand ≤ utilityh(x) then

ask the expert for the labely of x and returntrue.
else

return f alse.

Yet, the primary goal of this work is not to minimize
the number of labeled instances, but to build the hypothe-
ses with the best accuracy on all classes. This is why the
selection of labeled instances was tested through the “win-
dowing” technique that selects instances that are misclassi-
fied by the current hypothesis [14]. Misclassified instances
are likely to be close to the boundaries between classes and
to help better classify in these areas. It was shown experi-
mentally that the criterion that selects labeled instancesthat
are misclassified by the current hypothesis, calledMC (for
MisClassified), yields the best results over the other criteria
on the road safety application [30].

SelectionCriterion MC(x,h)
Ask the expert for the labely of x.
if h(x) 6= y then

returntrue.
else

return f alse.

The version of the generic incremental data selection al-
gorithm (Algorithm 1) with the MC criterion is calledSim-
pleMC (the algorithms with the other criteria are respec-
tively called SimpleQBC, SimpleCThres and SimpleCRand).
Specific stopping criteria exist, e.g. for Support Vector Ma-
chines (SVMs) [32], but the only generic stopping criterion
is an extra labeled dataset kept for performance evaluation.
In any case, the availability of the expert implies a finite
number of labeled instances, and thus constitutes the ulti-
mate stopping criterion of this algorithm. It should also be
kept in mind that the learning is never really finished when
dealing with a data stream, and it should be possible to later
update the hypotheses if necessary, in particular in the case
of concept drift.

The main shortcoming of this approach based on data
selection is stability. A learning algorithm is unstable when
small changes in the training set lead to significantly differ-
ent learnt hypotheses and big performance fluctuations [9].
Ensemble methods are a common solution to reduce the in-
stability of learning algorithms. A simple ensemble method
that combined the last versions of the hypothesis was intro-
duced in [30]. Although it offered the advantage of a small
computational cost by using previous versions of the hy-
potheses (already computed), the key limitation was the di-
versity in this set of hypotheses. As each hypothesis is the

previous hypothesis updated with only one new instance,
the ensemble diversity is bound to decrease as the number
of instances used for updating increases. The next section
presents new ensemble methods to address this issue.

3 Using the Order of Training Instances to Create
Classifier Ensembles

3.1 Ensemble Methods

Ensemble methods for classification and regression have at-
tracted a great deal of interest in the recent years. A good
introductory survey is provided in [27]. An ensemble is a
collection of hypotheses, called base or component hypothe-
ses, whose predictions are combined by weighted average or
vote [17]. Based on a substantial amount of theoretical and
empirical evidence, and on the availability of smart training
methods for ensembles, an ensemble of hypotheses is gen-
erally more accurate than a single hypothesis.

An intuitive key characteristic of ensemble methods is
the diversity of the set of combined hypotheses [20, 19].
There is obviously no point in combining identical hypothe-
ses, or no need for ensemble if the “perfect” hypothesis is
available. When ensemble components are imperfect, they
should be different so that at least some of them are correct
where the others are wrong. In the special issue of Infor-
mation Fusion on Diversity in Multiple Classifier Systems,
[6] provides a comprehensive survey of diversity creation
methods, introducing the idea of implicit and explicit diver-
sity creating methods. A technique such as Bagging [5] is
an implicit method, since it randomly samples the training
data to produce different sets for each hypothesis learning,
without any measurement to influence diversity. Boosting
[13] is an explicit method, since it directly manipulates the
training data distributions to ensure some form of diversity.
Numerous theoretical studies explain the success of Boost-
ing by proving bounds and margins on its error. Bagging
and Boosting are the most famous and successful ensem-
ble methods. This categorization is similar to the difference
made in [9] between independent and coordinated construc-
tions of hypotheses.

Diversity can be induced along three dimensions: 1) the
starting point in hypothesis space, 2) the set of accessible
hypotheses, 3) the traversal of hypothesis space. Hypothe-
ses are made accessible through the manipulation of train-
ing data. The space of possible training sets is characterized
by three dimensions: the training instances, the features that
describe the instances, and the pre-processing of features
to create a different representation of the instances (“distor-
tion” methods). This category of methods, which manipulate
training data, include implicit methods such as Bagging and
k-fold cross-validation, and explicit methods such as Boost-
ing, Input Decimation [35], DECORATE [23] and the ma-
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nipulation of output targets using Error Correcting Output
Codes [10]. While some methods rely on measures of the
diversity of hypotheses, there are “doubts about the useful-
ness of diversity measures in building classifier ensembles
in real-life pattern recognition problems” [20]. This paper
presents methods using the sensitivity of incremental algo-
rithms to the processing order of instances to create diverse
sets of hypotheses. To the authors’ knowledge, this mech-
anism has not been used explicitly in previous ensemble
methods. It can be argued that algorithms like Bagging and
Boosting, by manipulating the training sets, may take advan-
tage of this characteristic, but they do not require explicitly
base classifiers that are sensitive to the processing order of
instances.

3.2 Batch Mode

If the component algorithmA of SimpleMC is deterministic,
so is SimpleMC. The hypothesis produced by SimpleMC
is determined by the initialization datasetLinit and the data
streamS. Diversity can be created through the manipulation
of one of these two elements. In the batch mode, the ma-
nipulation of the processing order of instances is possible.
Although a non-deterministic component algorithmA could
alternatively be used, this work relies on a deterministic al-
gorithm, the Naive Bayes classifier (NB).

In batch mode, a datasetL = {x ∈ X} is available, la-
beled or not. When instances are used for training byA, their
label is available, by asking an expert if necessary. The pro-
posed algorithm initializes each hypothesishk on a dataset
Lk

init randomly drawn from the training datasetL (all Lk
init

have the same sizenk
init). The restL\Lk

init is then presented
in a random order to each hypothesis and processed accord-
ing to the selection criterion.

Algorithm 2 Generic BatchVote algorithm

Input : A datasetL = {x ∈ X}

Output : Final hypothesis obtained by the votes
of {hk

f inal|0≤ k ≤ K −1}.
begin

for k = 0... K −1 do
Draw a random subsetLk

init of L
RunA onLk

init with output hypothesishk
0

i = 0
for eachxi drawn in a random order inL\Lk

init do
if SelectionCriterion(xi,hk

i ) is truethen
(yi is obtained inSelectionCriterion)
Updatehk

i on (xi,yi) with A to producehk
i+1

else
hk

i+1 = hk
i

i = i+1
hk

f inal = hk
i

end

Algorithm 2 is generic with respect to the selection cri-
terion and is calledBatchVote (the version of this algorithm
with MC is calledBatchVoteMC). The parameters of Batch-
Vote are the number of hypothesesK and the sizenk

init of
the initialization datasetsLk

init for each hypothesis. When us-
ing the MC criterion,nk

init should be small in order to take
advantage of its ability to select instances for learning and
its sensitivity to the processing order of instances to create
diversity. BatchVoteMC follows similar principles to Boost-
ing techniques, namely distorting the training data distribu-
tion towards misclassified instances. While each hypothesis
of BatchVoteMC will independently process instances in a
given order, some instances should be misclassified by many
hypotheses, e.g. at the class boundaries, and thus be present
in many selected training datasets.

3.3 Online Mode

When learning online, with a data streamS, the order of the
data instances cannot be controlled. The diversity can then
be created by manipulating the initialization of the compo-
nent hypotheses. BatchVote can be used for that purpose.
The proposed algorithm initializes a set of diverse hypothe-
ses on the initialization labeled datasetLinit of sizeninit with
BatchVote. Each instance in the streamS is then considered
for selection by each hypothesis: since the selection criterion
depends on each hypothesis, which have a different initial-
ization, it will pick different instances from the same data
stream for the different hypotheses.

Algorithm 3 Generic StreamVote algorithm

Input : A stream of dataS = [xt ]

An initialization labeled datasetLinit

Output : Final hypothesis obtained by the votes
of {hk

f inal|0≤ k ≤ K −1}.
begin

Initialize K hypotheses{hk
0|0≤ k ≤ K −1}

with BatchVote onLinit

t = 0
repeat

for k = 0... K −1 do
if SelectionCriterion(xt,hk

t ) is truethen
(yt is obtained inSelectionCriterion)
Updatehk

t on (xt ,yt) with A to producehk
t+1

else
hk

t+1 = hk
t

t = t +1
until StoppingCriterion
for k = 0... K −1 do
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hk
f inal = hk

t

end

Algorithm 3 is generic with respect to the selection and
stopping criteria and is calledStreamVote (the version of this
algorithm with MC is calledStreamVoteMC). For a given
initialization datasetLinit and data streamS, the parame-
ters of StreamVote are the number of hypothesesK and the
size of the initialization datasets per hypothesisnk

init (nk
init ≤

ninit). If the component algorithmA is incremental, this algo-
rithm is incremental and updates the hypotheses on each in-
coming instancext . Like BatchVoteMC, StreamVoteMC fol-
lows similar principles to Boosting techniques. While each
hypothesis of StreamVoteMC has a different initialization,
some instances of the stream should be misclassified and se-
lected by many hypotheses.

3.4 Computational Cost of the Proposed Algorithms

BatchVoteMC and StreamVoteMC have the same complex-
ity: the comparison is made between BatchVoteMC and Ada-
Boost, the most common Boosting algorithm, since they are
both non-incremental. Training an ensemble ofK hypothe-
ses on a dataset ofN instances, is more expensive with the
AdaBoost algorithm [27] than the BatchVoteMC algorithm
(assuming an incremental base algorithmA). Each hypoth-
esis is trained on the whole dataset for AdaBoost, but only
on the subset of iteratively misclassified instances for Batch-
VoteMC. For both algorithms, each hypothesis predicts the
label of each instance that is compared to the true label: in
addition, AdaBoost computes the total error and a weight for
each hypothesis, which is also used to update the probabil-
ity distribution of the instances. AdaBoost therefore involves
more computations than BatchVoteMC per instance and per
hypothesis: the extra cost is constituted of at leastK com-
putations of the total weighted error andK ×N updates of
instance weights.

4 Experimental Evaluation

4.1 Experimental Setup

The learning algorithms are evaluated on benchmarks com-
posed of classical real datasets from the UCI Machine Learn-
ing Repository Database [2], and on the severity prediction
task. Naive Bayes classifiers are used as the component learn-
ing algorithm in all presented ensemble methods. This choice
was made on account of the good accuracy of this incre-
mental and fast learning algorithm, especially in the severity
prediction task. NB handle nominal data, have no parame-
ter and are not sensitive to the processing order of instances.

They have shown good performance on a wide range of tasks
[11, 16], and are frequently used in ensemble methods [26].

Table 1 The algorithms compared in the experimental evaluation are
classified depending on three characteristics: algorithmsthat build en-
semble of hypotheses (“Ensemble”), algorithms that construct a hy-
pothesis with only one pass over the data and update the hypothesis at
each step with the new data (“Incremental”), and algorithmsthat select
instances as a form of active learning (“Data selection”).

Algorithm Ensemble Incremental Data selection
NB ×
SimpleMC × ×
SimpleCThres × ×
SimpleCRand × ×
StreamVoteMC × × ×
QBC × × ×
StreamVoteCThres × × ×
StreamVoteCRand × × ×
BatchVoteMC × ×
Bagging × ×
Adaboost ×
SVM

The algorithms proposed in this paper, SimpleMC, Batch-
VoteMC and StreamVoteMC, are compared to other algo-
rithms (see the full list and their main characteristics in Ta-
ble 1). The Weka toolbox was used for the implementation
of the algorithms and the experimental evaluation [37]. The
incremental lossless version of Bagging is preferred [21].
The version of QBC is derived from Bagging, where the set
of hypotheses learnt independently in the Bagging algorithm
is used to select instances. An incremental non-lossless ver-
sion of AdaBoost exists [26], but for practical reasons, the
non-incremental implementation of Weka is used as it is re-
ported to yield equivalent or slightly better results.

The performance of a hypothesis is evaluated through
the global rate of correctly classified instances or accuracy
(Acc), the recall (Rc) and precision (Pc) for each classc.
Based on the confusion matrix of a hypothesish, which
holds at the position(i, j) the number of instances of the
classci with predicted classc j by h, with notationMi, j, and
the number of classesNc, the accuracy, recall and precision
for each class are defined as

Acc =
∑1≤i≤Nc Mi,i

∑1≤i≤Nc, 1≤ j≤Nc Mi, j

Rc =
Mc,c

∑1≤ j≤Nc Mc, j
; Pc =

Mc,c

∑1≤i≤Nc Mi,c

In the severity prediction task, the number of instances
in each class can vary greatly. With the recall and precision
for each class, it can be checked that a hypothesis performs
well on all classes.
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4.2 Benchmarks

4.2.1 Description

Table 2 Description of the 11 benchmark datasets [2], with the num-
ber of instances, attributes and classes (“cmc” stands for “contracep-
tive method choice”, “derma” for “dermatology” and “disc” for dis-
cretized). All their attributes are nominal.

Dataset Number Number Number
of instances of attributes of classes

mushroom 8124 23 2
soybean 683 36 19

vote 435 17 2
tic-tac-toe 958 10 2
iris disc 150 5 3

car 1728 7 4
cmc 1473 10 3

connect-4 67557 43 3
derma 366 35 6

promoters 106 58 2
audiology 226 70 24

The benchmarks described in the table 2 provide infor-
mation about the performance of the algorithms on other
datasets than the severity of vehicle interactions. None of
these benchmarks have a natural order. Incremental algo-
rithms process them in one pass in a given order (an ini-
tialization datasetLinit is drawn if necessary). The attributes
describing the data are all nominal, after discretization if
necessary, for comparison with the road safety data and di-
rect processing by NB. These datasets are very different.
The performance of the algorithms is evaluated with ten-
fold cross-validation (the partitions are identical for all algo-
rithms). The results for SVM are not available for the largest
dataset connect-4 due to computation time.

4.2.2 Sensitivity of StreamVoteMC to its Parameters

The influence of the parameters of StreamVoteMC (the size
of the initialization datasets per hypothesisnk

init , and the num-
ber of combined hypothesesK) on accuracy is studied. The
results are shown for the “tic-tac-toe” benchmark binary clas-
sification task. The sizeninit of the initialization datasetLinit

is kept small with respect to the size of the datasets to be
closer to a data stream situation. Forninit = 10, the accu-
racy is plotted as a function ofnk

init , varying from 1 toninit ,
for different values ofK in Figure 3. Whennk

init nearsninit ,
there is a drop of accuracy: this is expected fornk

init = ninit

as there is no more diversity in the set of hypotheses in this
limit case, and this diversity is reduced for values close to
ninit .

Accuracy is also plotted as a function ofK for different
values ofnk

init in Figure 3. As expected, accuracy increases

1 2 3 4 5 6 7 8 9 10
Size of the initialization datasets n k

init
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88
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Fig. 3 Accuracy of StreamVoteMC for the vote benchmark dataset
(ninit = 10). The results are averaged over 10 random partitions of the
datasets for cross-validation. On the first row, accuracy isplotted as a
function ofnk

init , varying from 1 toninit = 10, for different values ofK.
On the second row, accuracy is plotted as a function ofK for different
values ofnk

init .

with the number of hypotheses. The standard deviation is not
plotted since it shows no dependence on the parameters. For
the extensive comparison of all algorithms on all benchmark
datasets, the following parameter values are chosen:nk

init = 6
(for ninit = 10), andK = 10. A small default valuenk

init =

1 is chosen for BatchVoteMC to take full advantage of its
characteristics.

4.2.3 Accuracy Results

The complete accuracy results for all algorithms are pre-
sented in the Figures 4 and 5. BatchVoteMC and Stream-
VoteMC appear to have consistently the best accuracy or
close to the best among the incremental algorithm relying on
data selection. More importantly, if some data selection al-
gorithms perform well in some cases, such as QBC, CThres
and StreamVoteCThres, there is always a dataset on which
they have particularly weak accuracy, such as tic-tac-toe and
car.

StreamVoteMC is consistently more accurate than Sim-
pleMC. However, the accuracy of NB is not systematically



9

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

80

90

100

110

120

Ac
cu

ra
cy

95.8

100.0 99.6 99.1 100.0 98.8 99.8 99.4 100.0

95.7

100.0 100.0

Mushroom

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

70

80

90

100

110

Ac
cu

ra
cy

92.9
90.6

92.5

85.2

91.0
88.8

92.5

88.4

93.0 92.6 92.7 92.9

Soybean

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

70

80

90

100

110

Ac
cu

ra
cy

90.1

94.8 95.5
93.5

95.6 94.3 95.5 94.3
96.1

90.1

95.3 94.4

Vote

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

70

80

90

100

Ac
cu

ra
cy

69.6

86.8

70.0
71.4

93.4

71.3 70.0
73.3

97.7

70.0

83.2

99.9

Tic-tac-toe

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

80

90

100

110

Ac
cu

ra
cy 94.5 93.6 94.1 95.1 93.9 95.0 94.1 94.4 94.5 94.5 94.8 94.5

Iris disc

NB MC CT CR SVMC QBC SVCT SVCR BVMC Bag Ada SVM
Learning algorithms

70

80

90

100

110

Ac
cu

ra
cy

85.7

89.9

83.3
85.4

90.5

85.7
83.3

86.2

92.4

85.3

90.4

99.3

Car

Fig. 4 Accuracy averaged over 50 tenfold cross-validation, with standard deviation, on the 6 first benchmark datasets for all algorithms (see the
list of shortened names at the bottom right of Figure 5).

improved by SimpleMC and StreamVoteMC on five data-
sets, soybean, cmc, connect-4, dermatology and promoters.
The fact that AdaBoost and Bagging have similar weak-
nesses may imply that the performance of NB cannot be
easily improved upon. StreamVoteMC accuracy is not so far
from AdaBoost accuracy, and is even better on two datasets.
BatchVoteMC shows remarkable results, having the best ac-
curacy on all but the last three datasets. StreamVoteMC is
less accurate, but has the advantage of being incremental. As
can be seen in Figure 6, BatchVoteMC and StreamVoteMC
require about the same amount of time for learning, and

aboutK times more than SimpleMC, as expected. More im-
portantly, they require much less processing time than Ada-
Boost, i.e. consistently about half the computation time of
AdaBoost in these experiments.

SVM is the most accurate classifier on four datasets,
but the learning algorithm is not incremental and its train-
ing time is several orders of magnitude higher than all other
learning algorithms, which make it unsuitable to deal with
data streams and concept drift.
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Fig. 5 Accuracy averaged over 50 tenfold cross-validation, with standard deviation, on the 5 last benchmark datasets for all algorithms (see the
list of shortened names at the bottom right).

4.3 The Road Safety Application

4.3.1 Description

Data was labeled for two different sub-intersections of the
complex intersection under study. For these two tasks, the
expert can distinguish three severity levels, called MIN, MED
and MAX. There are many more instances in the class MED.
The results are based on three labeled datasets (initialization,
training and test) for each sub-intersection, described inta-
ble 3. The data streams were labeled sequentially for 35 and
50 minutes. To be more representative, each test dataset con-

tains data from four separate periods, under peak and fluid
traffic conditions.

Table 3 Characteristics of the severity prediction task: number ofin-
stances in the initialization dataset in whichLinit is drawn (to average
results with different initialization datasets), in the data streamS and
in the test set; number of attributes (i.e. number of grid units, see Fig-
ure 1).

Sub-intersection Number of instances Number
Initialization / S / Test of attributes

1 254 / 755 / 311 80
2 66 / 410 / 349 96
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Fig. 6 Distributions of the computational time taken by the learning phase of each algorithm over 50 runs for each dataset, as a proportion of the
time for BatchVoteMC (pay attention to the different scale for SVM on the right) (see the list of shortened algorithm names at the bottom right of
Figure 5).

4.3.2 Sensitivity of StreamVoteMC to its Parameters

In a typical learning task with a data stream, the size of the
initialization datasetLinit should be small, but sufficient to
create diversity among hypotheses. Forninit = 25, the influ-
ence ofnk

init andK on the performance of StreamVoteMC is
studied in Figure 7. Accuracy does not appear to depend on
nk

init , except for values close toninit . However, on the con-
trary to the benchmark datasets, the standard deviation does
depend onnk

init , and a small value should be chosen.K has
a greater impact on accuracy thannk

init : the average accu-
racy increases and its standard deviation decreases asK in-
creases. The chosen values arenk

init = 6 andK = 15.

4.3.3 Learning Results

The classification results at the end of the stream for the
two sub-intersections are presented in Figure 8 (boxplots
are used because several result distributions cannot be rep-
resented well with only the mean and standard deviation,
e.g. for the algorithms SimpleCThres and SimpleCRand).
BatchVoteMC is not tested on the severity prediction task
since incremental algorithms are favoured for this online ap-
plication. It is satisfying to notice that SimpleMC has bet-
ter accuracy and results for almost all classes than NB, and
that it is the same situation for StreamVoteMC with respect
to SimpleMC. The learning task seems to be more difficult
for sub-intersection 1 than for sub-intersection 2. Stream-
VoteMC has good accuracy for the two sub-intersections,

slightly better than AdaBoost but inferior to SVM for sub-
intersection 1, whereas these three algorithms are tied to-
gether for sub-intersection 2. It should be noted that the
good accuracy results of SVM are achieved at the expense
of the results on some classes, especially the MIN and MAX
classes which have much fewer instances than the MOY
class (see for example the MAX class for sub-intersection 2).
AdaBoost shows more balanced results, but they are still
weak for the MIN and MAX classes for sub-intersection 1.
The results of the other incremental algorithms for data se-
lection are significantly worse than the best results, degrad-
ing most NB results, except for QBC.

4.3.4 Learning Curves

The accuracy of the algorithms are estimated on the test
datasets every five processed instances of the stream (se-
lected or not) and the learning curves are displayed in Fig-
ure 9. Results are erratic at the beginning of the stream. The
accuracy standard deviation is not displayed to clarify the
plots: it decreases as more instances are processed. Simi-
larly to the previous results at the end of the stream it ap-
pears that StreamVoteMC improves SimpleMC, which it-
self already improves NB. Similar learning curves per class,
not displayed here, show also that StreamVoteMC has more
balanced results, when other algorithms like SVM and Ada-
Boost sacrifice the results on the MIN or MAX classes.
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Fig. 7 Accuracy averaged over 20 random drawings ofLinit with ninit = 25 (top) and its standard deviation (bottom) for one sub-intersection. They
are plotted as a function of the number of initialization instances per hypothesisnk

init for different values of the number of hypothesesK (on the
left), and as a function of the number of hypothesesK for different values of the number of initialization instances per hypothesisnk

init (on the
right).

5 Conclusion

This paper has presented new learning methods that meet
the demand of time-sensitive traffic management systems:
based on their sensitivity to the processing order of instances,
the new learning algorithms create diverse ensemble of hy-
potheses. These ensemble methods show good results on
a variety of classification tasks, especially the incremental
generic StreamVote algorithm that deals with data streams
in the severity prediction task for the road safety applica-
tion that motivated this work. The comparison of the pro-
posed algorithms to AdaBoost is particularly encouraging,
with close or better results on most datasets at a smaller
computational cost.

For lack of space, the possibility for the expert to refuse
labelling some instances was not presented in details. Tests
on the road safety application were made using fuzzy sets
to model the expert judgement, permitting the use of “fuzzy
labels” to label instances at the boundaries between classes.
Preliminary results using instances with fuzzy labels through
methods similar to Error Correcting Output Codes [10] did
not show any improvements. It should still be noted that

fuzzy labels are a useful tool for the expert, that could make
a difference for other tasks, especially with more than three
classes.

The generic algorithms BatchVote and StreamVote are
also interesting pool-based and stream-based active learning
ensemble methods that should be investigated as such. An
important unknown point of this work is the impact of the
Naive Bayes classifiers as base hypothesis for the ensemble
methods. In further steps, the dependence of the results on
the base algorithm and the way the selection criteria interact
with the base algorithm should be analyzed. A natural ex-
tension will be to deal explicitly with concept drift, in which
case the issue of selecting a stopping criterion becomes the
issue of detecting changes.
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