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Creating ensemble classifiers through order and incrementadata
selection in a stream

Application to the online learning of road safety indicators
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Abstract This paper presents an original time-sensitive trafKeywords Road safety Traffic managementEnsemble
fic management application for road safety diagnosis in sigmethods Incremental algorithms
nalized intersections. Such applications require to détal w
data streams that may be subject to concept drift over var-
ious time scales. The method for road safety analysis re-
lies on the estimation of severity indicators for vehicle in
teractions based on complex and noisy spatial occupancy
information. An expert provides imprecise labels based on
video recordings of the traffic scenes. In order to improve
the performance - overall and for each class - and the sta-
bility of learning in a stream, this paper presents new en-
semble methods based on incremental algorithms that rely
on their sensitivity to the processing order of instancet. D
ferent data selection criteria, many used in active legrnin
methods, are studied in a comprehensive experimental eval-
uation, including benchmark datasets from the UCI Machine
Learning Repository and the prediction of severity indica-
tors. The best performance is obtained with a criterion that
selects instances which are misclassified by the current hy-
pothesis. The proposed ensemble methods using this crite-
rion and AdaBoost have similar principles and performance,
while the proposed methods have a smaller computational
training cost.
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1 Introduction by the spatio-temporal distance between the interacting ve
hicles, and is related to their probability of collisionvSeal
1.1 Traffic Management Systems severity indicators have been proposed in the road safety li

erature [1, 31]. This work relies on a generic method based
Road traffic management systems (TMS) seek to improven an expert’s judgment.

road traffic flow in urban environments through a better uti- oy system uses the spatial occupancy measurements of
lization of existing infrastructures. This work targetié- ¢ experimental intersection provided by the video preces
sensitive applications that must adapt in the short to rmadiu ing tool as input data. The intersection surface is virguall
term respectively at the operational and tactical levels. | ~yered by a grid, each grid unit covering approximately
deed, road traffic management requires at the operationghe sixth of the size of a standard vehicle. Through video
level to continuously monitor traffic variables (flow, speedapalysis, each grid unit is assigned one of six possiblestat
and density) and other potentially disrupting events {inci ,epresenting the dynamics of the vehicles that passed on the
dents), and to continuously make decisions based on thgresponding part of the roadway over one second (Fig-
most recent data. Traffic management also relies on decjje 1), This data and the video traffic scenes were recorded
sion support systems at the tactical level to provide diano for 4 complex intersection in the suburbs of Paris over a pe-

over a longer time frame (in the order of hours to days). Iioq of eight months (Figure 2). The resulting database pro-
addition, the traffic data input to TMS shows strong temposiges the data used in this work.

ral patterns at different time scales (daily, weekly, seafo
but also evolves in time: traffic tends to increase over time
but is also regularly affected by unforeseen events such
economic crises. Such data may therefore suffer fcom

cept drift, i.e. when data, its distribution and its processin

The task is twofold: the detection of vehicle interactions
aand the evaluation of their severity. Vehicle interactians
Uetected and categorized by a first rule-based component,
described in [28, 29]. The second component, described in

Sthis paper, predicts a severity indicator (a class of sgyeri

(interpretation) change over time [18]. . S .
In th f h act d dt ﬁ.for each interaction instance on the basis of the examples
n the scope of a research project on advanced tra 'ngeled by the expert.

management methods for signalized intersections, we ha
access to an experimental intersection where multipleovide
sensors are installed and supply a video processing tool.
This tool computes traffic data measurements like occupancy
ratios, queue lengths and traffic flows that are used for sev-
eral traffic management applications such as traffic control
incidentdetection, red light running detection and roddtya
diagnosis [4, 24, 25]. In this context, we use machine learn-
ing techniques to automatically learn and predict traffic in
dicators, which take a small number of values (classes).

We favour incremental learning methods because they
are particularly suited for TMS, where the data stream may
be subject to concept drift. Indeed, incremental algorghm
construct a classifier with only one pass over the data and
update the classifier at each step with the new data, witho{fi9- 2 The experimental intersection.
accessing the data seen previously [36]. The ability to tgpda
classifiers on new data is very advantageous in case of con-
cept drift, instead of forgetting what was learnt previgusl
or re-training classifiers on the whole augmented dataset.

As illustrated in Figure 1, the input is a nominal vec-
tor concatenating the states of all grid units in the conflict
upstream and downstream zones of the approach with the
green light; based on the vehicle speeds, the severity of the
1.2 Road Safety Diagnosis in Signalized Intersections detected interaction in the example has been labeled as max-

imum by the expert watching the video recordings. Even
This paper focuses on a specific module of our researcthough the state of the grid units may seem explicit, the lim-
project devoted to road safety diagnosis in signalized-inte ited spatio-temporal definition, the fact that vehiclesraoe
sections. Our approach relies on the detection of vehiele inndividually identified and the noise make their interpreta
teractions and the evaluation of their severity. Vehicles a tion difficult. Supervised machine learning techniques are
interacting if they are close enough in time and space. Thased to tackle these issues and provide robust solutioms ove
severity, or proximity to a potential collision, is measdire manually tuned rule-based systems.
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Fig. 1 Example of input data, with one detected interaction of tighést severity.

1.3 Proposed Approach 2 Incremental Data Selection in a Stream

A supervised machine learning task is defined by three con?-1 Leaming Severity Indicators

ponents [12]: the environment that generates the data,-an ex

pert that supervises and a learner that builds hypothdses (tAs no tracking is performed by the video processing tool, an
term hypothesis is used here as a synonym to classifier). early choice was made to interpret the data& X at each

) o time t, independently from the other instants. This data at
This paper presents original ensemble methods based @fe ¢ contains occupancy information over the period of

incremental algorithms in which the learner iteratively se time petween — 1 andt which makes it possible to estimate
lects informative instances in order to improve the classifi, apicle dynamics (see Figure 1). The task is to learn how
cation accuracy, overall and for each class. These new metfyy 5ssociate a severity indicatarto eachx. Based on the
ods rely on a feature of many incremental algorithms: theif;igeq recordings of the traffic scenes, the judgement of the
sensitivity to the processing order of instances. Mostdancr expertis uncertain and imprecise. The expert can distigui
mental algorithms build different hypotheses if the ta@i o)y 4 few ordered severity levels. Létbe the set of these
instances are presgnted in different orders..These hygeghe |oyels or classes/( € Y). Since evaluating the severity indi-
can then be combined through a vote. This paper explores,ior may be difficult, the expert may hesitate and therefore
the use of order to create ensembles of classifiers. To the,i pe aple to label the data, in which case it cannot be used
authors’ knowledge, sensitivity to the processing order ofyr |eaming. Besides, it is observed that instances cak loo

instances has not been used explicitly in ensemble methodg,y similar and be labeled in different classes with cetsai

The incremental data selection algorithms are introducefly the expert: there seems to be a significant class overlap.
in the next section. After a review of ensemble methods, thENally, the classes are unbalanced, and itis importartitéor
new ensemble methods are presented in section 3. The g3@plication to maintain good performance for each class.

perimental evaluation on benchmark datasets and the road Instances are available only up to tihén a stream,
safety application is performed in section 4 and section Svhich defines an online setting [3], as opposed to an of-
concludes this paper. fline or batch setting, in which all the data is available. As



mentioned, incremental algorithms are the natural salutiobegin

to deal with data streams, and learning in one pass over the RunA on L™ with output hypothesikg
data is also very appealing when dealing with very large t=0

datasets in batch mode. An algorithm is strictly incremeenta repeat

if its requirements for memory and per example computa-  if SelectionCriterion(x, h;) is truethen
tion do not increase with the number of instances [18]. An (yt €Y is obtained inSel ectionCriterion)
incremental algorithm is lossless if it produces a hypathes Updateh; on (%, yt) with Ato produceh 1
at timet functionally equivalent to the corresponding hy- else
pothesis trained on the same data up to tirmeone batch. hey1=h

t=t+1

until SoppingCriterion
2.2 First Approach Nfina = ht
end

This section revisits the work presented in [30] that aims
at improving the accuracy of severity indicator prediction

Given the complexity of the task, in particular the noise in - ajgorithm 1 describes a classical generic incremental
the data, specific methods are needed to improve the acCi, ning algorithm for data selection in a stream: in addi-
racy of the hypotheses in difficult parts of the input spaceyiop, 16 the learning algorithm, it is characterized by a se-
€.9. where classes overlap at their boundaries: the agproag..ijon and a stopping criterion. Instances can be selected
relies on selecting a subset of the available instances fQfiiar pefore or after labeling. Instances are selectesreef
learning. Learning with a data stream allows the leamer 9,p|ing in most active learning approaches, which aim-at re
make an iterative selection of the most informative iInS#0C  g,cing the number of labeled instances. If the expert cannot
without knowing the data distribution, in order to spechigt  |5y¢ the instancesel ectionCriterion returns automatically
boundaries between the classes. A method that selects ifj g5 (this is not repeated in the following selection crite-
stances involves an active learner, i.e. aIearnerthamae§ ria to simplify their presentation). In the stream-basetdl se
control over the learning process [7, 34]. Data selectiaa in ting, the most famous technique is the Query-by-Committee

stream is thus cast in the active learning framework. (QBC) [8, 33], which relies on a set, or committee, of hy-
Most active learning algorithms deal with membershippotheseﬂ_

queries, where the learner can select instances and ask an
expert for their labels. Asking for the “right” instancesnca SelectionCriterion_QBC(x; h)
greatly reduce the number of labeled instances. Most metioraw randomly 2 hypothesés andh, fromH.
ods are applied to the “pool-based” setting, where a set df h1(x) # ho(x) then
unlabeled instances is available from the beginning, aad th ask the expert for the labglof x and returrtrue.
learner picks some iteratively for labeling at each stema else
pool-based algorithms choose instances maximizing or min- returnfalse.
imizing some utility attached to each instance, such as the
confidence of the current hypothesis in its prediction of the . L .
In the pool-based setting, criteria for data selection of-

instance class [22]. In the “stream-based” setting, thekra ¢ I definii f the utilitwtilit f |
decides whether to ask or not the label for each incoming in.-en rely on a definition of the utilitytilityn(x) of a poo

stance of the stream. In both settings, an incremental hypothtance( with respect. to the 9””e”t hypotheblsThey can
esis learning algorithm is a great advantage since duriag t bg adapted to the o.nlllne setting by using a threshold .[15] or
active learning process the hypotheses are iterativelgt us;l_)t'asid rand(;)m_de(;::csmn t[ﬁ] A u?!ty coml;noEIy ufﬁs n the
for prediction and then updated with the newly labeled in—_l[ era udre;s e;:nve _ror? © ((:jon ! teg;:e (f).da ypo m;
stances. In the remainder, the component learning algpmrithI S prediction for an Ins ano.e enotectontl _encen(x) anc

Ais supposed to be incremental (Naive Bayes is useé for typically normalized t0(0, 1]: t_hg object|ve_ 'S to select in-

in our experiments): it builds a hypothesis X — Y on a stances .Where the hypothesis is uncertainptiéity,(x) =
training dataset. If requested, an instance is labeled &y thl_ confidencen(x).

expertif he can. SelectionCriterion CThres(x, h)
if utilityn(x) > threshold then

ask the expert for the labglof x and returrtrue.
else

returnfalse.

Algorithm 1 Generic Simple algorithm

Input: A stream of dat&= [x] N
A labeled dataset for initialization™t
Output: Final hypothesi$ifinal



SelectionCriterion.CRand(x, h) previous hypothesis updated with only one new instance,
Draw a random variableand following a uniform the ensemble diversity is bound to decrease as the number
distribution on[0, 1]. of instances used for updating increases. The next section
if rand < utility,(x) then presents new ensemble methods to address this issue.

ask the expert for the labglof x and returrtrue.
els;(ztumfal ®. 3 Using the Order of Training Instances to Create

Classifier Ensembles

Yet, the primary goal of this work is not to minimize 3.1 Ensemble Methods

the number of labeled instances, but to build the hypothe-

ses with the best accuracy on all classes. This is why thEnsemble methods for classification and regression have at-

selection of labeled instances was tested through the “wirtracted a great deal of interest in the recent years. A good

dowing” technique that selects instances that are miselasgntroductory survey is provided in [27]. An ensemble is a

fied by the current hypothesis [14]. Misclassified instancesollection of hypotheses, called base or component hypothe

are likely to be close to the boundaries between classes asés, whose predictions are combined by weighted average or

to help better classify in these areas. It was shown expericote [17]. Based on a substantial amount of theoretical and

mentally that the criterion that selects labeled instatitats empirical evidence, and on the availability of smart tragni

are misclassified by the current hypothesis, caM#@ (for ~ methods for ensembles, an ensemble of hypotheses is gen-

MisClassified), yields the best results over the other criterigrally more accurate than a single hypothesis.

on the road safety application [30]. An intuitive key characteristic of ensemble methods is

SelectionCriterion MC(x, h) the div_ersity_ of the set Qf gombingd_ hypothe_ses [20, 19].

Ask the expert for the lablof x. There is obviously no pointin C(_)mbm‘l‘ng |den’:t|cal hypothe?

if h(x) £y then ses, or no need for ensemble if the “perfect . hypothesis is
available. When ensemble components are imperfect, they

returntrue. .
should be different so that at least some of them are correct
else .
where the others are wrong. In the special issue of Infor-
returnfalse.

mation Fusion on Diversity in Multiple Classifier Systems,
[6] provides a comprehensive survey of diversity creation

The version of the generic incremental data selection almethods, introducing the idea of implicit and explicit dive
gorithm (Algorithm 1) with the MC criterion is callefim-  sity creating methods. A technique such as Bagging [5] is
pleMC (the algorithms with the other criteria are respec-an implicit method, since it randomly samples the training
tively called SimpleQBC, SimpleCThres and SimpleCRanddata to produce different sets for each hypothesis learning
Specific stopping criteria exist, e.g. for Support Vector-Ma without any measurement to influence diversity. Boosting
chines (SVMs) [32], but the only generic stopping criterion[13] is an explicit method, since it directly manipulates th
is an extra labeled dataset kept for performance evaluatiotraining data distributions to ensure some form of divgrsit
In any case, the availability of the expert implies a finite Numerous theoretical studies explain the success of Boost-
number of labeled instances, and thus constitutes the ulting by proving bounds and margins on its error. Bagging
mate stopping criterion of this algorithm. It should also beand Boosting are the most famous and successful ensem-
kept in mind that the learning is never really finished wherble methods. This categorization is similar to the differen
dealing with a data stream, and it should be possible to latenade in [9] between independent and coordinated construc-
update the hypotheses if necessary, in particular in the casions of hypotheses.
of concept drift. Diversity can be induced along three dimensions: 1) the

The main shortcoming of this approach based on datatarting point in hypothesis space, 2) the set of accessible
selection is stability. A learning algorithm is unstableamh hypotheses, 3) the traversal of hypothesis space. Hypothe-
small changes in the training set lead to significantly diffe ses are made accessible through the manipulation of train-
ent learnt hypotheses and big performance fluctuations [9lng data. The space of possible training sets is charaeteriz
Ensemble methods are a common solution to reduce the ity three dimensions: the training instances, the feathigs t
stability of learning algorithms. A simple ensemble methoddescribe the instances, and the pre-processing of features
that combined the last versions of the hypothesis was intrado create a different representation of the instancest@idis
duced in [30]. Although it offered the advantage of a smalltion” methods). This category of methods, which manipulate
computational cost by using previous versions of the hytraining data, include implicit methods such as Bagging and
potheses (already computed), the key limitation was the dik-fold cross-validation, and explicit methods such as Boos
versity in this set of hypotheses. As each hypothesis is thimg, Input Decimation [35], DECORATE [23] and the ma-



nipulation of output targets using Error Correcting Outputend
Codes [10]. While some methods rely on measures of the
diversity of hypotheses, there are “doubts about the useful

ness of diversity measures in building classifier ensembles Algorithm 2 is generic with respect to the selection cri-

in real-life pattern recognition problems” [20]. This pape terion and is calledatchVote (the version of this algorithm

presents methods using the sensitivity of incremental-algq,ith mc is calledBatchVoteMC). The parameters of Batch-

rithms to the processing order of instances to create diver yie are the number of hypothesésand the sizek ., of
ni

sets of hypotheses. To the authors’ knowledge, this mechq injtjalization datasetss,, for each hypothesis. When us-

anism has not been used explicitly in previous ensemblpng the MC criterion,niknit should be small in order to take

methods. It can be argued that algorithms like Bagging andqyantage of its ability to select instances for learnind an
Boosting, by manipulating the training sets, may take advany sensitivity to the processing order of instances toterea
tage of this characteristic, but they do not require eXtici qiersity. BatchVoteMC follows similar principles to Bdes
base classifiers that are sensitive to the processing ofder g techniques, namely distorting the training data disri
Instances. tion towards misclassified instances. While each hypashesi
of BatchVoteMC will independently process instances in a
given order, some instances should be misclassified by many
hypotheses, e.g. at the class boundaries, and thus be fpresen

. . . L in many selected training datasets.
If the component algorithrA of SimpleMC is deterministic,

so is SimpleMC. The hypothesis produced by SimpleMC

is determined by the initialization datadg}i; and the data 3 3 Online Mode

streamS. Diversity can be created through the manipulation

of one of these two elements. In the batch mode, the Maa/hen |earning online, with a data stre&@rthe order of the

nipulation of the processing order of instances is possiblejata instances cannot be controlled. The diversity can then

Although a non-deterministic component algorithnould  pe created by manipulating the initialization of the compo-

alternatively be used, this work relies on a deterministtic a nent hypotheses. BatchVote can be used for that purpose.

gorithm, the Naive Bayes classifier (NB). The proposed algorithm initializes a set of diverse hypothe
In batch mode, a dataskt= {x € X} is available, la- ses on the initialization labeled datakef; of sizenini with

beled or not. When instances are used for trainingtheir  BatchVote. Each instance in the stre&is then considered

label is available, by asking an expert if necessary. The prdor selection by each hypothesis: since the selectiorrimite

posed algorithm initializes each hypothelsfson a dataset depends on each hypothesis, which have a different initial-

Lk;; randomly drawn from the training datadet(all LK, ization, it will pick different instances from the same data

have the same sizaf,,). The rest_\L,, is then presented stream for the different hypotheses.
in a random order to each hypothesis and processed accord-
ing to the selection criterion. Algorithm 3 Generic Stream\ote algorithm

3.2 Batch Mode

Input: A stream of dat&= [x]
An initialization labeled dataséft
Output: Final hypothesis obtained by the votes
of {h, 410 < k<K -—1}.

Algorithm 2 Generic BatchVote algorithm

Input: A datasel = {x € X}
Output: Final hypothesis obtained by the votes

of {h, 410 <k <K-—1}. begin

begin
for k=0...K—1do
Draw a random subsef,, of L
RunA on LK, with output hypothesik
i=0
for eachx; drawn in a random order ib\LX,, do
if SelectionCriterion(x;, h¥) is truethen
(y; is obtained inSel ectionCriterion)
Updatehk on (x,yi) with A to produceh, ;
else
hﬁ1=hr
i=i+1
h%inal = hik

Initialize K hypothesegh§|0 < k < K — 1}
with BatchVote orLinit
t=0
repeat
fork=0..K—1do
if SelectionCriterion(x, h¥) is truethen
(vt is obtained inSel ectionCriterion)
Updatehf on (x, ;) with A to producenf, ;
else
k+1 _ htk
t=t+1
until SoppingCriterion
fork=0..K—1do



h‘?ina, =hk They have shown good performance on a wide range of tasks
end [11, 16], and are frequently used in ensemble methods [26].

: : : : : Table 1 The algorithms compared in the experimental evaluation are
Algorithm 3 is generic with respect to the selection andclassified depending on three characteristics: algorittaitsbuild en-

stopping criteria and is calle8iream\Vote (the version of this  semple of hypotheses (“Ensemble”), algorithms that cansta hy-
algorithm with MC is calledSream\oteMC). For a given pothesis with only one pass over the data and update thetgistat

initialization dataseLn; and data strean$, the parame- gach step with the new da_ta (“Incrgmental”), and algorithnasselect
ters of StreamVote are the number of hypothdéesd the instances as a form of active learning (“Data selection”).
size of the initialization datasets per hypothedis (nk;, < Algorithm Ensemble Incremental Data selection

Ninit)- If the component algorithA is incremental, this algo- g‘l'?n leMC i y
rithm is ?ncremental_ and updates the hypotheses on each in'SimgleCThres « «
coming instance;. Like BatchVoteMC, StreamVoteMC fol-  simpleCRand x x
lows similar principles to Boosting techniques. While each StreamVoteMC X X X
hypothesis of StreamVoteMC has a different initialization QBC X X x
. fth hould b iscl ified and StreamVoteCThres x X X
some instances of the stream should be misclassified and s€gy camvoteCRand  x 9 9
lected by many hypotheses. BatchVoteMC X X
Bagging X X
Adaboost X
3.4 Computational Cost of the Proposed Algorithms SVM

BatchVoteMC and StreamVoteMC have the same complex-
ity: the comparison is made between BatchVoteMC and Ada-  The algorithms proposed in this paper, SimpleMC, Batch-
Boost, the most common Boosting algorithm, since they ar&0teMC and StreamVoteMC, are compared to other algo-
both non-incremental. Training an ensembleofiypothe-  fithms (see the full list and their main characteristicsa T
ses on a dataset of instances, is more expensive with the ble 1). The Weka toolbox was used for the implementation
AdaBoost algorithm [27] than the BatchVoteMC algorithm Of the algorithms and the experimental evaluation [37]. The
(assuming an incremental base algoritAlnEach hypoth-  incremental lossless version of Bagging is preferred [21].
esis is trained on the whole dataset for AdaBoost, but onlyhe version of QBC is derived from Bagging, where the set
on the subset of iteratively misclassified instances focBat ©f hypotheses learntindependently in the Bagging algerith
VoteMC. For both algorithms, each hypothesis predicts thés used to select instances. An incremental non-lossless ve
label of each instance that is compared to the true label: ifion of AdaBoost exists [26], but for practical reasons, the
addition, AdaBoost computes the total error and a weight fopon-incremental implementation of Weka is used as it is re-
each hypothesis, which is also used to update the probabitorted to yield equivalent or slightly better results.
ity distribution of the instances. AdaBoost therefore irres The performance of a hypothesis is evaluated through
more computations than BatchVoteMC per instance and péhe global rate of correctly classified instances or acgurac
hypothesis: the extra cost is constituted of at léastom-  (Acc), the recall R:) and precision K) for each clasg.
putations of the total weighted error aKdx N updates of Based on the confusion matrix of a hypothelsjswhich
instance weights. holds at the positiorfi, j) the number of instances of the

classc; with predicted class; by h, with notationM; j, and

the number of classé¥;, the accuracy, recall and precision
4 Experimental Evaluation for each class are defined as

4.1 Experimental Setup . S 1ciong Mij
The learning algorithms are evaluated on benchmarks com-
posed of classical real datasets from the UCI Machine Learn-

ing Repository Database [2], and on the severity predictior, _ Me,c - p— Mec

task. Naive Bayes classifiers are used as the componentlearn Y 1<j<n.Mcj re Ya<i<neMic

ing algorithmin all presented ensemble methods. This ehoic

was made on account of the good accuracy of this incre- In the severity prediction task, the number of instances
mental and fast learning algorithm, especially in the sgwer in each class can vary greatly. With the recall and precision
prediction task. NB handle nominal data, have no paraméer each class, it can be checked that a hypothesis performs
ter and are not sensitive to the processing order of instancewell on all classes.

Y1<i<g, 1<j<NeMij



4.2 Benchmarks

94
4.2.1 Description
921
+— K=1
o) * = K=2
Table 2 Description of the 11 benchmark datasets [2], with the num- 5 90 - K=5
ber of instances, attributes and classes (“cmc” standsciomttacep- < e K=10
tive method choice”, “derma” for “dermatology” and “discdif dis- o Ke=20
cretized). All their attributes are nominal. =
Dataset Number Number Number
ofinstances  of attributes  of classes 8er
mushroom 8124 23 2 e e I e T
Soybean 683 36 19 Size of the initialization datasets n/,
vote 435 17 2
tic-tac-toe 958 10 2
iris disc 150 5 3 gl
car 1728 7 4
cmc 1473 10 3 92f -
connect-4 67557 43 3 D
derma 366 35 6 g 2
promoters 106 58 2 g% ) ”’f'*j
audiology 226 70 24 e
f ¥ n;,=10
88
The benchmarks described in the table 2 provide infor ~ *%

mation about the performance of the algorithms on othe 0 5 ;‘o A fhl‘s N zI? P5 30
. . . . umber of hypotheses
datasets than the severity of vehicle interactions. None ¢
these benchmarks have a natural order' |ncremental a|gBLg 3 Accuracy of StreamVoteMC for the vote benchmark dataset
ninit = 10). The results are averaged over 10 random partitionseof th

. . . . e
rithms Process them in one pass in a given order (an InIdatasets for cross-validation. On the first row, accura@tatied as a

tialization datasetinit is drawn if necessary). The attributes ynction ofrk,,, varying from 1 taniy; = 10, for different values oK.
describing the data are all nominal, after discretization iOn the second row, accuracy is plotted as a functiok &dr different
necessary, for comparison with the road safety data and dyalues ofnff;-

rect processing by NB. These datasets are very different.

The performance of the algorithms is evaluated with ten-

fold cross-validation (the partitions are identical fdradgjo-  with the number of hypotheses. The standard deviation is not

rithms). The results for SVM are not available for the latgesplotted since it shows no dependence on the parameters. For

dataset connect-4 due to computation time. the extensive comparison of all algorithms on all benchmark
datasets, the following parameter values are chaggn= 6
4.2.2 Sensitivity of StreamVoteMC to its Parameters (for ninit = 10), andK = 10. A small default valuef;, =

1 is chosen for BatchVoteMC to take full advantage of its

The influence of the parameters of StreamVoteMC (the sizeharacteristics.
of the initialization datasets per hypotheﬁﬁ, and the num-
ber of combined hypothes& on accuracy is studied. The 4.2.3 Accuracy Results
results are shown for the “tic-tac-toe” benchmark binaagel
sification task. The siza,;; of the initialization datasdt;,;  The complete accuracy results for all algorithms are pre-
is kept small with respect to the size of the datasets to bsented in the Figures 4 and 5. BatchVoteMC and Stream-
closer to a data stream situation. Fgy; = 10, the accu- VoteMC appear to have consistently the best accuracy or
racy is plotted as a function cufnit, varying from 1 tonj,it,  close to the best among the incremental algorithm relying on
for different values oK in Figure 3. Whemiknit nearsinit, data selection. More importantly, if some data selectien al
there is a drop of accuracy: this is expectedrihrt = Ninit gorithms perform well in some cases, such as QBC, CThres
as there is no more diversity in the set of hypotheses in thiand StreamVoteCThres, there is always a dataset on which
limit case, and this diversity is reduced for values close tdhey have particularly weak accuracy, such as tic-tac+tde a
Ninit - car.

Accuracy is also plotted as a function kffor different StreamVoteMC is consistently more accurate than Sim-
values ofn}(nit in Figure 3. As expected, accuracy increasepleMC. However, the accuracy of NB is not systematically
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Fig. 4 Accuracy averaged over 50 tenfold cross-validation, wieimdard deviation, on the 6 first benchmark datasets folgdrithms (see the
list of shortened names at the bottom right of Figure 5).

improved by SimpleMC and StreamVoteMC on five data-aboutK times more than SimpleMC, as expected. More im-

sets, soybean, cmc, connect-4, dermatology and promoteggortantly, they require much less processing time than Ada-

The fact that AdaBoost and Bagging have similar weakBoost, i.e. consistently about half the computation time of

nesses may imply that the performance of NB cannot bé&daBoost in these experiments.

easily improved upon. StreamVoteMC accuracy is not so far

from AdaBoost accuracy, and is even better on two datasets.

BatchVoteMC shows remarkable results, having the best ac-

curacy on all but the last three datasets. StreamVoteMC is SVM is the most accurate classifier on four datasets,

less accurate, but has the advantage of being incremestal. Aut the learning algorithm is not incremental and its train-

can be seen in Figure 6, BatchVoteMC and StreamVoteM@ng time is several orders of magnitude higher than all other

require about the same amount of time for learning, andearning algorithms, which make it unsuitable to deal with
data streams and concept drift.
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Fig. 5 Accuracy averaged over 50 tenfold cross-validation, wiindard deviation, on the 5 last benchmark datasets fotgaltithms (see the
list of shortened names at the bottom right).

4.3 The Road Safety Application tains data from four separate periods, under peak and fluid
traffic conditions.
4.3.1 Description
. ) ] Table 3 Characteristics of the severity prediction task: numbanef
Data was labeled for two different sub-intersections of thestances in the initialization dataset in whichy; is drawn (to average
complex intersection under study. For these two tasks, theesults with different initialization datasets), in thetalatreamsS and
expert can distinguish three severity levels, called MINEIM in the test set; number of attributes (i.e. number of gridsyrsiee Fig-

ure 1
and MAX. There are many more instances in the class MED. - _ _ i
The results are based on three labeled datasets (initiafiza Sub-intersection Number of instances  Number
- . . . . Initialization /S/ Test  of attributes
training and test) for each sub-intersection, described-in 1 SE4 1755 7 311 80
ble 3. The data streams were labeled sequentially for 35 and 2 66/410/349 96

50 minutes. To be more representative, each test dataset con
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Fig. 6 Distributions of the computational time taken by the leagphase of each algorithm over 50 runs for each dataset, mgarpon of the
time for BatchVoteMC (pay attention to the different scale $VM on the right) (see the list of shortened algorithm naiethe bottom right of
Figure 5).

4.3.2 Sensitivity of SreamVoteMC to its Parameters slightly better than AdaBoost but inferior to SVM for sub-
intersection 1, whereas these three algorithms are tied to-
In a typical learning task with a data stream, the size of thgjether for sub-intersection 2. It should be noted that the
initialization dataset.nit should be small, but sufficient to good accuracy results of SVM are achieved at the expense
create diversity among hypotheses. Rgi = 25, the influ-  of the results on some classes, especially the MIN and MAX
ence ofnf;; andK on the performance of StreamVoteMC is classes which have much fewer instances than the MOY
studied in Figure 7. Accuracy does not appear to depend aglass (see for example the MAX class for sub-intersection 2)
nkit, except for values close twyt. However, on the con- AdaBoost shows more balanced results, but they are still
trary to the benchmark datasets, the standard deviation dogeak for the MIN and MAX classes for sub-intersection 1.
depend omk;;, and a small value should be chosnhas  The results of the other incremental algorithms for data se-
a greater impact on accuracy thaffy,: the average accu- lection are significantly worse than the best results, degra
racy increases and its standard deviation decread€sras ing most NB results, except for QBC.
creases. The chosen valuesdfg = 6 andK = 15.

4.3.3 Learning Results

4.3.4 Learning Curves
The classification results at the end of the stream for the
two sub-intersections are presented in Figure 8 (boxplot¥he accuracy of the algorithms are estimated on the test
are used because several result distributions cannot be regatasets every five processed instances of the stream (se-
resented well with only the mean and standard deviationgected or not) and the learning curves are displayed in Fig-
e.g. for the algorithms SimpleCThres and SimpleCRand)ure 9. Results are erratic at the beginning of the stream. The
BatchVoteMC is not tested on the severity prediction taskaccuracy standard deviation is not displayed to clarify the
since incremental algorithms are favoured for this onlipe a plots: it decreases as more instances are processed. Simi-
plication. It is satisfying to notice that SimpleMC has bet-larly to the previous results at the end of the stream it ap-
ter accuracy and results for almost all classes than NB, angkars that StreamVoteMC improves SimpleMC, which it-
that it is the same situation for StreamVoteMC with respectelf already improves NB. Similar learning curves per ¢lass
to SimpleMC. The learning task seems to be more difficulihot displayed here, show also that StreamVoteMC has more
for sub-intersection 1 than for sub-intersection 2. Streambalanced results, when other algorithms like SVM and Ada-
VoteMC has good accuracy for the two sub-intersectionsBoost sacrifice the results on the MIN or MAX classes.
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Fig. 7 Accuracy averaged over 20 random drawingkigf with n,iy = 25 (top) and its standard deviation (bottom) for one subrsgction. They
are plotted as a function of the number of initializationtamees per hypothesh‘;fnil for different values of the number of hypotheségon the
left), and as a function of the number of hypothekefor different values of the number of initialization instas per hypothesiss;; (on the
right).

5 Conclusion fuzzy labels are a useful tool for the expert, that could make
a difference for other tasks, especially with more thanghre

This paper has presented new learning methods that megasses.

the demand of time-sensitive traffic management systems: The generic algorithms BatchVote and StreamVote are

based on their sensitivity to the processing order of ircstan  also interesting pool-based and stream-based activergarn

the new learning algorithms create diverse ensemble of hyensemble methods that should be investigated as such. An

potheses. These ensemble methods show good results ipmportant unknown point of this work is the impact of the

a variety of classification tasks, especially the incremkent Naive Bayes classifiers as base hypothesis for the ensemble

generic StreamVote algorithm that deals with data streamsethods. In further steps, the dependence of the results on

in the severity prediction task for the road safety applicathe base algorithm and the way the selection criteria iotera

tion that motivated this work. The comparison of the pro-with the base algorithm should be analyzed. A natural ex-

posed algorithms to AdaBoost is particularly encouragingtension will be to deal explicitly with concept drift, in wtt

with close or better results on most datasets at a smallefase the issue of selecting a stopping criterion becomes the

computational cost. issue of detecting changes.

For lack of space, the possibility for the expert to refuse

labelling some instances was not presented in detailss Test

on the road safety application were made using fuzzy sets

to model the expert judgement, permitting the use of “fuzzyAcknowledgment

labels” to label instances at the boundaries between dasse

Preliminary results using instances with fuzzy labelstigto  The authors wish to thank the reviewers for their construc-

methods similar to Error Correcting Output Codes [10] didtive comments that helped to significantly improve the pa-

not show any improvements. It should still be noted thafer.
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