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ABSTRACT
Road collisions represent deplorable human and financial costs to society. Although some progress
has been made, a renewed effort is necessary to tackle this growing worldwide issue. This paper
advocates the development of proactive methods for road safety analysis that do not depend on
the occurrence of collisions. In particular, collecting and analyzing microscopic data (road users’
trajectories) about all traffic events with and without a collision is the only way to gain insight into
collision factors and processes, i.e. the chains of events that lead to collisions. This paper reports
on the first phase of a project relying on microscopic data extracted from video sensors and data
mining techniques to identify patterns in the traffic event database. Decision trees, the k-means
algorithm and a hierarchical agglomerative clustering method are used to analyze the relationship
between interaction attributes and outcome (collision or not) and identify groups of interactions
with similar attributes. This approach is demonstrated on a dataset collected in Kentucky of 295
traffic events, constituted of 213 conflicts and 82 collisions. The decision tree confirms the impor-
tance of the evasive action in the interaction outcome. Three clusters are found based on speed
indicators extracted from the road users’ trajectories: one cluster contains few collisions, with
the lowest speeds among the three clusters. This result hints at the existence of conflicts that are
dissimilar from most collisions and may therefore not be suitable for surrogate safety analysis.
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INTRODUCTION
The social cost of road collisions is among the largest negative side effects of road transportation.
Including the costs of fatalities, disabilities, injuries and property damage, as well as medical care,
lost productivity and traffic delays, the social cost of road collisions is estimated in (1) at $63 billion
for Canada in 2004. In many age intervals, road collisions are among the leading causes of death:
in particular, it is the first leading cause of death for people between 15 and 29 years (2). The
World Health Organization predicts that road collisions will jump from the nineth leading cause
of death in 2004 to the fifth in 2030 (2). Compared to other health problems, the burden of road
collisions is all the more acute because the victims are overwhelmingly young and healthy prior to
their involvement in a collision.

Road safety improvements may be achieved within the three components of the road system
through changes in

1. infrastructure design,

2. vehicle safety,

3. road user behaviour.

This work deals with methods for road safety analysis at a given location, which permit to identify
contributing factors related to the three components and more particularly to the road. Traditional
road safety analysis methods rely on collision databases that are filled with collision data manually
collected after the occurrence of the collision, typically in the form of insurance and police reports.
This data suffers from the following issues (3):

1. difficult attribution of collisions to a cause (reports are skewed towards the attribution
of responsibility, not the search for the causes that led to a collision),

2. small data quantity,

3. limited quality of the data reconstituted after the event (with a bias towards more dam-
aging collisions).

The following paradox ensues: safety analysts need to wait for accidents to happen in order to
prevent them. There is a need for new proactive methods for road safety analysis, relying on more
frequent traffic events without a collision.

Limited data is available on the context of collisions and the collision process, i.e. the
chain of events that lead to a collision. The solution is to record information continuously about all
traffic events: this can be achieved using video sensors and computer vision techniques extracting
all road users’ trajectories. Such data helps investigate the safety hierarchy (4), i.e. the framework
that places all traffic events on a continuum with collisions at the top, undisturbed passages or
“safe traffic events” at the bottom and traffic conflicts in between. The position of a traffic event in
the safety hierarchy measures its proximity to a potential collision, or severity. Significant effort
has been invested to develop techniques to collect and link to collisions the specific class of the
most severe traffic conflicts. It is believed that the observation of all traffic events can provide a
complementary safety diagnosis, more complete than can be done using collision data alone. It is
in particular a way to gain more knowledge about the factors and processes that lead to collisions.
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This work has implications for the development of proactive methods for road safety anal-
ysis. A better understanding of the characteristics of traffic events with and without a collision
should help derive better relationships between them, in order to identify types of traffic events
without a collision that can be used as surrogates for road safety analysis. This is critical as the
work of Davis et al. (5) on a small set of traffic events suggests that the evasive actions under-
taken by road users involved in conflicts may be of a different nature than the ones attempted in
collisions.

This work pursues a line of research started at the University of British Columbia on auto-
mated road safety analysis using video sensors. A probabilistic framework for the computation of
the probability of collision for all road users in interaction was proposed in (6) and refined in (7).
This paper reports on the first phase of a research project that aims to better understand collision
factors and processes using a large set of traffic events composed of conflicts and collisions. Con-
textual information and microscopic data, i.e. the trajectories of road users involved in the traffic
events, are extracted automatically and mined for patterns using artificial intelligence techniques
(data mining). By comparing traffic events with and without a collision, this work will help to iden-
tify surrogate measures of safety. To the authors’ knowledge, this work is unique in the size of the
analyzed dataset and the actual observation of safety related events. The next sections will cover:
the related work, the descriptive analysis of the dataset, the results of the data mining techniques
and finally the conclusion with a discussion of the next steps of the project.

RELATED WORK
Road Safety Analysis
Safety is defined as the number of collisions expected to occur at a given location per unit of
time, where expected means “the average in the long run if it were possible to freeze all prevailing
conditions that affect safety” (8). There has been a considerable amount of research to estimate
safety models as a function of explanatory variables describing the transportation system: the
road, the vehicle and the driver. These safety models, also called a crash prediction model (CPM)
or safety performance function (SPF), typically take the form of an equation linking safety to a
set of variables and rely on historical collision data. These models are at the core of the reference
Highway Safety Manual (HSM) that should be available in 2010. As argued in the introduction,
historical collision data obtained from insurance and police reports is ill-suited for the analysis of
collision processes.

Two methods based solely on collisions stand out to help shed more light on collision
factors and processes: in-depth accident analysis and naturalistic driving studies. In-depth accident
analysis rely on detailed reconstitutions to investigate collision factors (9) and as such may provide
some information on the chain of events that led to the collision. However, they share many
shortcomings with methods based on historical collision data: they provide only limited amounts
of data, at a higher cost, they rely on reconstitutions in which the collision processes may be
only guessed at and they still require to wait for collisions to occur. Naturalistic driving studies
rely on the continuous collection of data on a road user, his driving behaviour, the vehicle and
the environment, over extended periods of time (10). Very large projects, e.g. in the Strategic
Highway Research Program 2 Safety research area (11), are in the making and should provide
unprecedented information. An advantage will be the observation of all traffic events, not only
collisions. Nevertheless, naturalistic driving studies also have limitations: they typically provide
detailed information only on one of the road users involved in a safety-related event; instrumenting
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vehicles is costly and requires access to the vehicle, while fixed video cameras provide external
non-intrusive monitoring of all traffic events and their context at a lower cost.

Traffic conflict studies are the most common proactive methods for road safety analysis
(4, 12). Although mixed validation results, issues of cost and reliability have hindered their de-
velopment, they have been integrated into traditional approaches, including the HSM, providing
complementary information and alternative methods. The framework of the safety hierarchy was
developed in the context of traffic conflict studies (13) and is the basis for more recent approaches
that take into account all road users’ interactions, not only the most severe traffic conflicts, for
more complete and robust diagnoses (4, 6, 7). However, traffic conflict data traditionally collected
by observers in the field is too limited and suffers from reliability issues that makes it unsuitable
to understand collision processes: objective microscopic data is required for this purpose.

Limited road safety analysis is based on microscopic road user data as it was not easily
available until recently: computer vision techniques now permit to extract automatically micro-
scopic data from video data. Road users’ trajectories are rarely collected with the primary goal of
safety analysis (5, 14, 15, 16, 17, 18, 19). To the authors’ knowledge, no work aiming to under-
stand collision processes relies on automatically collected microscopic data. The present work is
also unique in the size of the dataset and the fact that it contains traffic events with and without a
collision.

Data Mining in Road Safety Analysis
Machine learning models, like artificial neural networks (ANN) and support vector machines
(SVM) (20), have been widely applied to estimate CPMs. However, the goal of this project is
to understand collision factors, which requires to extract patterns from data and can be achieved
through data mining techniques (21). These include classification, using for example decision trees
that can be interpreted, as opposed to the “black box” nature of ANNs and SVMs, and clustering,
i.e. finding groups through some similarity measure, using for example the k-means algorithm.
Data mining has been used for the analysis of databases constituted only of collisions without any
microscopic data.

Safety models for some collision attribute have been built to classify collisions and identify
collision factors. Collision-prone locations and the membership of collision factors to road, driver
of vehicle was investigated in (22, 23) using a fuzzy k-means algorithm, ANN and fuzzy k-nearest
neighbours. Several attempts at modeling collision outcomes have been made. In (24), ANNs,
decision trees and logistic regression are employed to identify collision severity-related factors to
predict one of three possible outcomes: bodily injury (death or injury) and property damage. It was
found that the presence of a protective device (i.e., seat-belt or helmet) is the most important factor
in the crash severity variation. Further work in (25) indicates that a clustering-based classification
algorithm works best for their data. ANNs and fuzzy adaptive resonance theory ANN are used in
(26) to show that gender, vehicle speed, seat belt use, type of vehicle, point of impact, and area type
(rural versus urban) affect the likelihood of injury severity levels. (27) developed classification and
regression trees (CART) to analyze the risk factors that can influence the injury severity in traf-
fic collisions: it was concluded that the most important variable associated with collision severity
is the vehicle type, while pedestrians, motorcycle and bicycle riders are identified to have higher
risks of being injured than other types of vehicle drivers in traffic collisions. Latent class clustering
technique were employed in (28) to segment traffic collision data and identify homogeneous col-
lision types. Injury models were then developed using multinomial logit model for each resulting
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cluster, based on features such as collision type, crossroad type, built-up area, road type, road user
age, dynamics of road user (moving or stationary), and vehicle type: it is concluded that cluster
models reveal new variables affecting injury outcome and provide a more complete interpretation
of the relationship causal variables and injury outcome. From this short review, it is apparent that,
despite significant use of data mining techniques to analyze collision data, the lack of microscopic
data describing traffic events with and without a collision limits the scope of the collision factors
that can be identified and the analysis of the similarities of traffic events of different severities.

DESCRIPTIVE ANALYSIS OF THE DATASET
Context
This work relies on a unique dataset of video recordings of traffic conflicts and collisions collected
at one signalized intersection Kentucky between August 16th 2001 to May 31st 2006 (29). All
the analysis reported in this paper was carried out with the video recordings as the only source
of information, except for the date and time of recording that can be derived from the filenames.
There are two subsets of video recordings, one labelled as “miss” and the other as “incident”,
corresponding respectively to traffic conflicts of mild to high severity and collisions. It is not clear
from (29) how the severity was estimated to identify the subset of traffic conflicts. Each recording
contains, or should contain, one clear safety-related traffic event, i.e. a traffic conflict or a collision.
From the original set of respectively 238 traffic conflicts and 116 collisions, 213 and 82 are used
in the analysis. The remainder of the recordings was not analyzed because of the video quality,
of tracking issues for the video analysis tool or of the absence of a relevant traffic event. In the
remaining video recordings, all safety-related traffic events involve at least two road users: all
traffic events are therefore referred to as interactions.

The quality of the video data makes road user detection and tracking challenging. The
video recordings have a resolution of 352 pixels in width by 240 pixels in height, varying levels
of compression, colour aberrations..., affecting the image quality, and a frame rate of 15 frames
per second. Many challenging conditions for automated video analysis are covered, with various
times of recording (day and night) and weather conditions: sunny days cause strong shadows, there
are many cases of snow, fog and rain (sometimes at night, in which case the reflection of vehicle
headlights causes particular glare). Although these issues made some recordings impossible to
analyze, road users’ detection and tracking was possible in most recordings, using a video-based
system developed previously (30) (see some frames in FIGURE 4). The analysis relies on the
trajectories used in (7).

The Database
All 295 interactions are described by a list of attributes, listed in TABLE 1. Most categorical at-
tributes are extracted manually by watching the video recordings. The simple interaction categories
used in (7) are expanded in this work (see FIGURE 1), covering most of the categories proposed
in (8). The road users’ origin and type are also stored in the database: the number of road users
involved in each interaction is counted by type. In addition to bikes and pedestrians, the types of
motorized vehicles are taken from the FHWA vehicle classes. There are currently no pedestrians,
bikes or buses in the database. In some cases, more than two road users could be considered to be
involved in an interaction, but for simplicity in this first phase, information only on the two closest
was included in the database. The number of evasive actions attempted by the road users are also
counted by type.
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TABLE 1 Attributes of the interactions (A × in the “Auto” column indicates if the attributes
were automatically extracted from the data, ∆v is the times series of the norm of the differ-
ence of the velocities, and s designates the road users’ speed time series)

Categorical attributes Auto Values
Type of day × weekday, week end
Lighting condition daytime, twilight, nighttime
Weather condition normal, rain, snow
Interaction category same direction (turning left and right, rear-end, lane
(FIGURE 1) change), opposite direction (turning left and right,

head-on), side (turning left and right, straight)
Interaction outcome conflict, collision
Numerical attributes Auto Units
Road user type
passenger car number of road users
van, 4x4, SUV number of road users
bus number of road users
truck (all sizes) number of road users
motorcycle number of road users
bike number of road users
pedestrian number of road users
Road user origin
I65 Jefferson Street exit number of road users
I65 Brook Street exit number of road users
Brook Street number of road users
Jefferson Street number of road users
Type of evasive action
No evasive action number of evasive actions
Braking number of evasive actions
Swerving number of evasive actions
Acceleration number of evasive actions
3 attributes from ∆v × km/h
6 values from s × km/h

To extract automatically information from the trajectories of the road users involved in each
interaction, they are manually identified among all road users’ trajectories in each video sequence.
For this phase of the project, only speed data was extracted: from the times series of the road users
velocities (speed vectors), the following attributes are computed:

• the minimum, maximum and mean values of the speeds of each road user, denoted re-
spectively smin, smax and s̄. In order to have a unique description of the interaction, i.e.
symmetric with respect to the involved road users, the attributes are ordered by increas-
ing value (i.e. smin1 < smin2, smax1 < smax2 and s̄1 < s̄2). 6 such attributes are therefore
used to describe the road users’ speeds during their interaction.

• the minimum, maximum and mean values of the norm of the difference of the road users’
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FIGURE 1 Hierarchy of interaction categories.

velocities for the whole time interval during which they are tracked simultaneously, de-
noted respectively ∆vmin, ∆vmax and ∆v.

Descriptive Analysis
As can be seen in FIGURE 2, there does not seem to be any relationship between the interaction
outcome and the type of day, the lighting conditions and the weather conditions. Overall, weather
conditions were mostly “normal”. There are actually slightly fewer collisions during twilight and
nighttime than during daytime. There is also no particular pattern in the interaction category. As
can be expected, there is a strong relationship between the type of evasive action and the interaction
outcome: in most collisions (62 out of 82), no evasive action was attempted. There is also a sizable
amount of conflicts where at least one of the involved road users did not attempt an evasive action.

Speed attributes are displayed in FIGURE 3. The speed differences are quite similar for
conflicts and collisions. However, speeds are systematically higher for collisions than for conflicts,
although the difference is within the standard deviation of each category.
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FIGURE 2 Some distributions of the database attributes per interaction outcome.

A rough localization of each interaction was also obtained by averaging the positions of the
involved road users during the period of time they were simultaneously tracked. No pattern was
visible when plotting the various interaction attributes, in particular the interaction outcome, except
for the interaction category (see FIGURE 4). This makes sense as the side straight interactions
occur at the upper left corner of the intersection, while same direction interaction happen between
vehicles coming from similar origins on either street.

EXPLORATORY ANALYSIS USING DATA MINING TECHNIQUES
The interaction database was mined for patterns using two well-known data mining techniques:
decision trees and the k-means algorithm (21). Association rules were tried, but did not yield any
strong result. The free and open source software TANAGRA is used for this analysis (31).
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FIGURE 3 Some distributions of the speed attributes of the database per interaction out-
come (the error bars represent the standard deviation).

Classification
The C4.5 decision tree algorithm is used to predict the interaction outcome from the attributes.
The goal is not to classify interactions, but to identify rules in the conditions generated by the
algorithm at each node to predict the interaction outcome. The following numerical attributes are
transformed and grouped as categorical attributes so that they are treated as one attribute by the
decision tree: the road user types, the road user origins and the types of evasive actions. The new
attribute can be any pair of two of the original attributes, e.g. “passenger car/truck” for the road
user types or “braking/swerving” for the types of evasive actions. There is no need to normalize
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FIGURE 4 Sample interactions of different categories (top) and spatial plots of the interac-
tion outcomes (bottom left) and categories (bottom right). The upper left intersection corner
in the maps (bottom) corresponds to the farthest corner in the video images (top).

numerical attributes for decision trees.
A decision tree is thus learnt using all the interaction attributes, with the parameters min-

imum size of leaves set to 6 and the confidence level to 0.25: the decision tree has 13 nodes and
10 leaves, and an error rate of 0.0746 (which is computed on the training dataset and therefore
over-estimates the classification performance). The resulting rules are presented in FIGURE 5,
with the characterization of the corresponding leave. The first split done by the tree deals with the
evasive actions, which is expected (see FIGURE 2): in particular, the absence of an evasive action
leads in 91.18% of cases to a collision. The presence of at least an evasive action is associated with
conflicts, except for “swerving/no evasive action” and “braking/no evasive action”. In this latter
case, it is possible to refine the rules based on the speed attributes ∆v and s̄1. Conflicts are associ-
ated with larger mean velocity differences, or, if the average velocity difference is low, lower mean
individual speeds: the first case is probably related to successful braking to avoid collision, while
the second is more difficult to interpret. Collisions occur in the remainder of the cases, i.e. for low
mean velocity differences and higher individual mean speed, which is logical, though pertains to
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• Evasive actions in [braking/braking] then Interaction outcome = conflict (94.62 % of
93 examples)

• Evasive actions in [braking/no evasive action]

◦ ∆v < 12.6183

* s̄1 < 13.4022 then Interaction outcome = conflict (83.33 % of 12 examples)

* s̄1 ≥ 13.4022 then Interaction outcome = collision (83.33 % of 6 examples)

◦ ∆v ≥ 12.6183 then Interaction outcome = conflict (95.31 % of 64 examples)

• Evasive actions in [no evasive action/no evasive action] then Interaction outcome = col-
lision (91.18 % of 68 examples)

• Evasive actions in [braking/swerving] then Interaction outcome = conflict (96.55 % of
29 examples)

• Evasive actions in [no evasive action/swerving] then Interaction outcome = conflict
(55.56 % of 9 examples)

• Evasive actions in [swerving/swerving] then Interaction outcome = conflict (100.00 % of
5 examples)

• Evasive actions in [braking/acceleration] then Interaction outcome = conflict (100.00 %
of 7 examples)

• Evasive actions in [no evasive action/acceleration] then Interaction outcome = conflict
(100.00 % of 2 examples)

FIGURE 5 Rules generated by the decision tree.

only 5 interactions out of 6.
This analysis has provided interpretable knowledge about the interactions and their at-

tributes and confirms the obvious link between collision avoidance and the presence of at least
an evasive action. In particular, mean velocity differences are higher when collision is avoided
thanks to braking by one of the road users.

Clustering
Given the descriptive analysis of the database done in the previous section and the goal of this
project to study collision processes, the choice was made to use only the nine speed attributes for
the clustering. In particular, it is hoped that the resulting clusters can help identify relationships
between conflicts and collisions that can be used for surrogate safety analysis, as well as the lack
of such relationships. Three types of clusters can be produced by the method, depending on the
proportion of conflicts and collisions in the cluster, with the following potential implications:

• a mixed cluster of similar conflicts and collisions: this could indicate that the conflicts in
the cluster can be used as surrogates for the collisions in the same cluster,
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• a pure cluster with no or very few conflicts in the cluster: this could indicate that it is not
possible to use conflicts as surrogates to the collisions in the cluster,

• a pure cluster with no or very few collisions in the cluster: this could indicate that the
conflicts in the cluster cannot be used as surrogates to any type of collision.

Before doing any analysis, the required preliminary step is to normalize all the attributes:
the objective is to standardize the scale of effects of each variable on the results. The Euclidean
distance is chosen as the distance used by the k-means algorithm to compare the interaction in-
stances.

The partitioning algorithm k-means is a very effective method used to identify homoge-
neous groups assuming a number of classes known at the beginning. The number of clusters
depends on the depth of analysis desired and its determination can be a challenge. Following the
approach used in (32), the data is first clustered in a large number of groups, larger than what
can be reasonably expected for our analysis (in our case 25). The groups are then merged using a
hierarchical agglomerative clustering method. At each iteration, the ratio of between-cluster sum-
of-squares (BSS ratio) and the Gap are calculated and used to determine the number of clusters by
the hierarchical algorithm. The compactness of the data is measured by the gap value while the
dissimilarity between them is considered by the BSS ratio. A good clustering yields clusters where
they have high BSS ratio and gap value. The dendogram shows that a division into three clusters
is appropriate (see FIGURE 6).

 

 

 

  

Gap : 0,2390 

BSS ratio : 0,33 

3 clusters 

FIGURE 6 Dendogram of the 25 clusters to obtain the number of clusters in the data.

After identifying an appropriate number of clusters with the previous method, the k-means
algorithm is applied again for three groups. Some distributions of the clusters are presented in
FIGURE 7. Cluster 1 and 3 are characterized by higher proportions of collisions (respectively
40.8 % and 44.4 %), while cluster 2 contains few collisions (7.8 %). The distribution of evasive
actions per cluster is not shown, but is consistent with the previous characterization and the propor-
tions of conflict and collisions in the clusters. The distribution of interaction categories in cluster
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2 is homogeneous to the whole database, while it is skewed in cluster 1 (over-representation of
side straight and same direction turning right) and cluster 3 (over-representation of same direction
turning left and right and same direction changing lanes). No relationship to the other categorical
attributes could be discovered. Since the clustering is based on speed attributes, the clusters should
show differences for these attributes. As can be seen in FIGURE 7, the clusters comprehend dif-
ferent mean speed and velocity difference values: the first cluster has the highest speeds for all
attributes, followed by cluster 3 and cluster 2 on all attributes but one. Similarly to FIGURE 4,
the spatial distribution of the clusters was investigated but showed no discernible pattern. The final
characterization of the clusters, i.e. of the over-representations of some attributes with respect to
the whole database, can thus be made:

Cluster 1 collisions, highest speeds, categories side straight and same direction turning right

Cluster 2 almost pure conflicts, lowest speeds

Cluster 3 collisions, medium speeds, categories same direction turning left and right and same
direction changing lanes

Based on a clustering of the interactions only on speed attributes, the three clusters show
some contrasted characteristics. The clusters 1 and 3 are mixed, with over-representation of col-
lisions with respect to the whole database, and represent two classes of interactions differing in
speeds and categories: the conflicts in these clusters are good candidates for surrogates for the
collisions in their respective clusters. On the other hand, cluster 2 is overwhelmingly constituted
of conflicts, and characterized by lower speeds: it could characterize a group of conflicts of lower
severity, that cannot be used as surrogates, or only for some specific collisions.

CONCLUSION
This paper has presented the first results of a larger project aiming to better understand collision
factors and processes using microscopic data. A large dataset of 295 interactions, constituted of
conflicts and collisions, was characterized by mining their attributes, using in particular decision
trees and the k-means partitioning algorithm. Obvious relationships such as the link of evasive ac-
tions and their absence to the interaction outcome were confirmed. The clustering analysis yielded
evidence that not all conflicts should be used as surrogates for all collisions and showed how groups
of similar conflicts and collisions can be identified.

Further investigation is necessary to confirm these findings. It should be recalled that the
conditions of the data collection are not exactly known, in particular their sampling conditions: is
the set of interactions available in the dataset representative of all interactions of similar severity
that occurred during the time period of the data collection? It should also be noted that exposure
data is not available and that no conclusion should be therefore drawn on the risk of collision in
the conditions under study.

In any case, this work paves the way for larger efforts to come and increase knowledge of
collision processes. The next phases of this work will make use of the whole road users’ trajecto-
ries, develop temporal indicators to characterize the interactions and use better similarities, which
can in particular accommodate multi-dimensional vectors of varying length. Future projects will
include the collection of large scale datasets of all road users’ interactions in known conditions that
will allow drawing stronger conclusions.
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FIGURE 7 Distributions of the interaction outcome, interactions category, and speed at-
tributes for the three clusters (the error bars represent the standard deviation).
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