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ABSTRACT 1 
Environment and driver behaviour are significant contributory factors in traffic collisions. Surrogate safety 2 

measures, non-crash measures that are physically and predictably related to crashes, provide opportunities 3 

for user-centric approaches to road safety and reduce dependency on crash data in environment-centric 4 

approaches. The purpose of this study is to extract surrogate safety measures from the smartphone-collected 5 

GPS data of regular drivers and to analyze those measures from an environment-centric and user-centric 6 

perspective. GPS travel data was collected using the Mon Trajet smartphone application in Quebec City, 7 

Canada over 21 days. Crash data was obtained from the Ministry of Transportation Quebec for a five year 8 

period from 2006 to 2010. The selected surrogate indicator, hard braking events (HBEs), demonstrated a 9 

spatial correlation of 0.67 with collision occurrence. Despite strong correlation, HBEs tend to overestimate 10 

risk on highway facilities and underestimate risk on local and arterial streets as the sample data collected 11 

from regular drivers likely over-represents travel on highways and under-represents travel on urban streets. 12 

The user-centric analysis showed that more HBEs occur during the AM and PM peak periods, and that 13 

braking in the PM peak period tends to be more severe, demonstrating that HBEs are not only spatially 14 

correlated with actual collision occurrence, but also make sense intuitively with respect to the behaviours 15 

related to collision occurrence. Future work will determine if other surrogate indicators that are more 16 

closely correlated with collision occurrence can be extracted, and disaggregating the analyses by facility 17 

type should improve the results.  18 

 19 

 20 

 21 

 22 
Keywords: surrogate safety, smartphone, GPS, urban, collision prediction, behaviour, probe vehicles  23 
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INTRODUCTION 1 
Environment and driver behaviour are significant contributory factors in traffic collisions and important 2 

influencers of road safety (1). Naturally, effective safety improvements should be environment-centric 3 

(addressing the ‘where’ of collisions) or user-centric (addressing the ‘who’ of collisions) or both. 4 

Environment-centric approaches involve identifying and remediating high-risk sites that “create an 5 

increased risk of unforeseeable accidents” due to their design or operation (2). Screening methods based on 6 

crash frequency or severity ranking criteria have traditionally been used to identify hazardous locations. 7 

Unfortunately, crash-based methods are reactive (2), require long collection periods to accumulate the 8 

necessary volume of crash data for analysis (3), are subject to errors and omissions in collision databases, 9 

and are sensitive to crash underreporting (4). These issues are particularly important in developing countries 10 

where the lack of reliable crash data inhibits implementation of crash-based techniques. User-centric 11 

approaches attempt to understand the relationship between driver behaviour and crash occurrence (1), often 12 

using naturalistic driving data collected unobtrusively in crashes, near crashes, and normal conditions. 13 

Naturalistic methods provide information difficult to observe by other techniques (5, 6) and allow for the 14 

use of surrogate safety measures based on behaviour rather than indicators based on collision statistics. 15 

Surrogate safety measures are non-crash measures that are physically and predictably related to crashes (7), 16 

and provide opportunities for user-centric approaches to road safety while reducing dependency on crash 17 

data in environment-centric approaches (8).  18 

Naturalistic approaches typically yield large volumes of data from which surrogate indicators must 19 

be identified (5). Various methods for analyzing naturalistic data have been proposed, including the use of 20 

human observers. Though human observation practically limits the amount of data that can be analyzed and 21 

measurements may be subjective (8), human judgement provides a level-of-detail beyond what is currently 22 

possible through objective techniques (8). Compared to human observation, roadside-based sensors 23 

increase the sampling rate of road users and improve objectivity. Among methods for surrogate safety 24 

analysis, the traffic conflict technique using video-based sensors and computer vision techniques has been 25 

popular for before and after studies (2). Though video-based sensors provide high temporal resolution (2) 26 

and rich positional data beyond counts and speed (9), the analysis of video data is potentially time and 27 

resource intensive (2, 8), and interpretation of video data in behaviour terms requires additional 28 

consideration (8). Indicators based on traffic parameters collected by traditional point sensors including 29 

loops, radar, or other sensors (10, 11, 12) have yet to be proven as reliable surrogate safety measures, and 30 

the costs of these technologies make it impractical to implement theme across an urban network (13). 31 

In-vehicle sensors provide the best opportunity for collecting spatio-temporal naturalistic driving 32 

data within a road network. Instrumented vehicles (probe vehicles or floating car data) act “as moving 33 

sensors, continuously feeding information about traffic conditions” (14). GPS devices are reliable sources 34 

of naturalistic driving data (15) and may be complemented by additional vehicle kinematics from 35 

accelerometers or gyroscopes and environmental factors collected by external sensors such as radars. These 36 

sensors provide long periods of continuous data for a small sample of road users (2). Though the method is 37 

limited in terms of the studied population of drivers, the spatial coverage of GPS data makes it ideal for 38 

studying environmental factors, and the naturalistic nature of GPS data makes it ideal for addressing 39 

behavioural factors (1).  Furthermore, new technologies, including GPS-enabled smartphones, have made 40 

and will continue to make obtaining GPS data from vehicles easier over time. This leads to opportunities 41 

for real time data collection and safety analysis which is potentially interesting for emergency services. 42 

The purpose of this study is to examine surrogate safety measures derived from probe vehicle data 43 

collected by the GPS-enabled smartphones of regular drivers. The objectives of this research are to correlate 44 

GPS-based surrogate measures to actual collision occurrence, to analyze those surrogate measures from 45 

both an environment-centric and user centric perspective, and to discuss the strengths and limitations of 46 

GPS data in surrogate safety analysis.  47 

 48 

LITERATURE REVIEW 49 
Though probe vehicles have been widely used in spatio-temporal applications such as traffic monitoring 50 

and origin-destination studies (13), applications in road safety have been less common. Automated incident 51 
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detection (AID) involves the identification of “non-recurring events such as accidents” through pattern 1 

classification of traffic flow (16), and improves safety by reducing secondary collisions (17). Existing 2 

techniques using dedicated probe vehicles have low penetration rates and are insufficient for providing “an 3 

exhaustive coverage of the transportation network” (13). Therefore, probe vehicles are often used in 4 

conjunction with traditional roadside sensors (14). In research applications, traffic simulation has been used 5 

to achieve proportions of dedicated probe vehicles beyond that which is possible in the field. Sethi et al. 6 

(17) found that probe vehicles improve successful incident detection rates and decreased false alarm rates 7 

over roadside sensors alone, though only when using a proportion of dedicated probe vehicles beyond what 8 

could be expected in practice (17). Dia and Thomas (16) similarly achieved the best results when probe 9 

vehicles comprised 20% of the traffic stream (16). 10 

User-centric approaches using probe vehicles have been somewhat infrequent. Fazeen et al. (19) 11 

used smartphone accelerometer data to classify ‘safe’ accelerations and decelerations from ‘unsafe’ ones 12 

(approximately 3 m/s2 or greater), though failed to demonstrate whether ‘unsafe’ behaviour led to increased 13 

collision risk. Jun, Ogle, and Guensler (15) analyzed the relationship between spatio-temporal driving 14 

activity and likelihood of crash involvement. Using dedicated GPS devices and self-reported safety data, 15 

the study found that drivers involved in crashes tended to travel longer distances and at higher speeds, and 16 

also “engaged in hard deceleration events” (greater than 2.7 m/s2) more frequently (15). Though failing to 17 

show a causal link between decelerations and collision risk, the authors suggest that decelerations “may be 18 

employed as roadway safety surrogate measures” (15). Although behavioural studies typically consider 19 

differences in demographics, they frequently fail to consider temporal and spatial factors (1). Ellison, 20 

Greaves, and Bliemer (1) studied 106 drivers using GPS devices to collect speed, speed limit, location, and 21 

timestamp for every second of vehicle operation, along with demographic surveys for each driver. By 22 

controlling for temporal and spatial factors including geometry, weather, time of day, trip purpose, and 23 

vehicle occupancy, the authors found that the road environment was a significant influencer of driver 24 

behaviour (1). However, as 90% of all traffic collisions involve behavioural factors (20), this points to the 25 

strong indirect effect of road environment on safety through behavioural influence. 26 

Probe-based surrogate safety measures aim to identify drivers avoiding collisions through evasive 27 

manoeuvres including steering, braking, or accelerating (21). Although speed is often regarded as an 28 

important surrogate measure, changes in speed (acceleration or jerk) may be more important (8). Algerholm 29 

and Larhmann (2) used data collected from 6 drivers over a 3 month period using GPS devices and 30 

accelerometers. The authors stated that “braking was the evasive action […] in 88% of the accidents in 31 

built-up areas” (2), making decelerations a logical indicator to extract. Jerk was found to be correlated with 32 

accident occurrence both across drivers (user-centric) and across sites (environment-centric) (2). Bagdadi 33 

(5) noted that the most common crashes are rear-end collisions, and used GPS, accelerometer, and radar 34 

data from 109 participants. The proposed surrogate measure based on jerk was used to correctly identify 35 

self-reported near misses at an 86% success rate (5). One shortcoming of this study is that the ground truth 36 

data used was itself a surrogate measure (near misses) and not actual collision data.  37 

Several shortcomings are apparent in the existing literature, which this study attempts to address. 38 

First, there has been no attempt to derive surrogate safety measures from smartphone-collected GPS data 39 

of regular drivers alone. Existing studies have used dedicated probe vehicles (resulting in sample sizes of 40 

100 drivers or less) or dedicated GPS devices with supplemental accelerometer data. Second, there has been 41 

no comprehensive comparison of GPS-based surrogate indicators to large quantities of crash data. Instead, 42 

studies have compared indicators to sample safety data, which is often self-reported. Thirdly, there has been 43 

little effort to consider user-centric and environment-centric approaches simultaneously. 44 

 45 

METHODOLOGY 46 
 47 

Data Collection 48 
Naturalistic driving data should be collected as unobtrusively as possible, to ensure data accurately 49 

represents normal driving conditions. Collecting GPS data from smartphones allows for the study of regular 50 

drivers using a system that minimally impacts their behaviour, and the implementation of a smartphone 51 
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application makes use of devices already widely available to the driving population reducing cost and 1 

increasing potential sample size. Smartphone applications, such as Mon Trajet (22, 23) by Brisk Synergies 2 

(24), shown in FIGURE 1, are installed voluntarily by drivers and collect GPS data anonymously. General 3 

trip information, including route, origin and destination, and start and end time, are captured for every user-4 

reported trip logged in the application. Travel is described by observations including user speed, latitude, 5 

longitude, and altitude captured for every 1-2 seconds of vehicle operation. Other socio-demographic 6 

information may also be available depending on the configuration of the application. Once a trip has been 7 

collected and reported by the user, initial pre-processing of the data is completed using Kalman filtering to 8 

reduce data variability. The GPS data is then stored in remote databases, from which the raw GPS 9 

observations are exported for further analysis. 10 

 11 

           12 

FIGURE 1  Smartphone application interfaces 13 

Data Cleaning 14 
Although GPS data from a smartphone application is rich in spatio-temporal data, raw GPS traces contain 15 

variability in both position and speed. Even with pre-processing of the user data, additional data cleaning 16 

methods are required. Although Kalman filtering is popular, the method only smooths vehicle positions in 17 

terms of a latitude and longitude and does not explicitly link trips to the road network. This study used a 18 

map-matching process to ensure that trips are correctly matched to the links in the road network where they 19 

occurred. Vehicle speed measurements were cleaned using exponential smoothing. 20 

 21 

Map Matching 22 

TrackMatching is a commercially available, cloud-based web map-matching software service (25) that 23 

matches GPS data trip data to the OpenStreetMap (OSM) road network (26). Before GPS data is sent to 24 

TrackMatching, the data must be split into individual trips and formatted according to the input 25 

requirements of the software, including only the coordinate id, timestamp, latitude, and longitude for each 26 

observation. The software returns a map-matched OSM ID (link ID), map-matched latitude and longitude, 27 

and source and destination nodes along the OSM link for each GPS observation. Importantly, because much 28 

important information (user ID, speed, timestamp, etc.) is lost through the map matching process, the results 29 

must be merged back with the original data to preserve the complete data set. 30 
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Speed Smoothing 1 

Simple exponential smoothing is used to eliminate noise and outliers within the GPS-collected speed data 2 

by generating new speed estimates for each observation (27). The smoothing equation is given by 3 

 4 

𝑌̂𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)𝑌̂𝑡−1             (1) 5 

 6 

where 𝑌̂𝑡 is the estimated speed at the current time step, 𝑡; 𝑌𝑡 is the speed at the current time step as measured 7 

by the GPS, 𝑡; 𝑌̂𝑡−1 is the estimated speed at the previous time step, 𝑡 − 1; and 𝛼 is the smoothing parameter. 8 

Increasing alpha increases the effect of the observed speed (less smoothing) while decreasing alpha 9 

increases the effect of the last estimated speed (more smoothing). If alpha is too large, then smoothing is 10 

minimal, and noise in the GPS data may be wrongly interpreted as braking (type II error). If alpha is too 11 

small, then smoothing can potentially eliminate actual braking events (type I error). Smoothing parameters 12 

of 0.4, 0.6, and 0.8 were tested. The process of collecting and cleaning the GPS data is illustrated in 13 

FIGURE 2. 14 

 15 

 16 

FIGURE 2  Collection and cleaning of smartphone-collected GPS data 17 

Extraction of Surrogate Indicators 18 
After the data has been collected and cleaned, the surrogate safety measures are extracted from the analysis 19 

data set. Recognizing that deceleration is perhaps the most common evasive manoeuvre in urban areas (2), 20 

selecting hard braking events (HBEs) as the surrogate indicator of interest is logical. Studies focussed on 21 

deceleration have used jerk, observed using accelerometers, to define the surrogate indicator (2, 5). When 22 

using GPS data alone, calculating jerk-based surrogate safety measures is not possible, as GPS observations 23 

are too infrequent to capture the required detail. However, Fazeen et al. (19) suggested that decelerations 24 

exceeding 3 m/s2 were an indicator of ‘unsafe’ behaviour. Therefore, using a deceleration threshold may be 25 

sufficient to define HBEs. Although the 3 m/s2 threshold is a starting point to develop GPS-based surrogate 26 

indicators, thresholds of 4 m/s2 and 5 m/s2 were also tested. An algorithm was developed to automatically 27 

identify all instances where a vehicle exceeded the threshold. HBEs were then analyzed from both 28 

environment-centric and user-centric perspectives. 29 
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(2) 

 

Environment-Centric Analysis 1 
 2 

Spearman Rank Correlation 3 

As surrogate safety measures must be predictably related to crashes (7), any proposed measure must 4 

demonstrate correlation with actual safety or risk. Spearman’s Rank Correlation Coefficient, or Spearman’s 5 

rho, indicates how strongly the dependency between two variables is described by a monotonic function 6 

and is a popular choice for correlating surrogate indicators with crash data. Locations with the most 7 

collisions should also have the most HBEs, and sites with fewer collisions should have fewer HBEs. A rho 8 

of 1.0 indicates positive correlation, 0.0 indicates no correlation, and -1.0 indicates negative correlation. 9 

Spearman’s rho, 𝜌, is calculated using 10 

 11 

𝜌 = 1 −
6 ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛(𝑛2 − 1)
 12 

 13 

where 𝑥𝑖 and 𝑦𝑖 are the ranks of site i in the two data sets and 𝑛 is the total number of sites. The ranks, 𝑥𝑖 14 

and 𝑦𝑖, were created by generating buffers around each intersection (any point where two OSM links meet 15 

or intersect) in the road network using GIS. The total numbers of collisions and HBEs within the buffers 16 

were then counted, and intersections were ranked based on these counts. The effect of buffer size on 17 

correlation was determined by comparing results generated with 100 m, 200 m, and 500 m buffers. 18 

 19 

Hot Spot Analysis 20 

Although Spearman’s rho generally quantifies the correlation between a surrogate safety measure and 21 

collision occurrence, additional analysis is necessary to observe discrepancies between the data sets. Heat 22 

maps generated using GIS can be compared visually to determine where the surrogate measure performs 23 

well (has strong agreement with the crash data) and where performance is poor. Heat maps were generated 24 

in GIS for both collisions and HBEs using a 500 m radius and 50 m pixel width. 25 

 26 

User-Centric Analysis 27 
Rather than just considering the locations in the road network where hard braking events occur, a user-28 

centric approach to surrogate safety can show which characteristics or behaviours of drivers contribute to 29 

the occurrence or severity of HBEs and therefore collisions (if the link between HBEs and collisions is 30 

demonstrated). Though driver socio-demographics were not collected, consideration for spatio-temporal 31 

driving behaviour (15) is possible based on GPS data. The user-centric analysis was completed using two 32 

ordered logit models. The first model was used to analyze the occurrence of hard braking events. In this 33 

model, trips were divided into trips with at least one HBE above 3 m/s2 (Alternative 1), and trips with none 34 

(Alternative 0). The dependent variables included trip characteristics of length and average speed, and time-35 

of-day characteristics indicating whether the trip occurred during the AM peak period (6:00 AM to 9:00 36 

AM), PM peak period (4:00 PM to 7:00 PM) or at night (10:00 PM to 4:00 AM), and whether the trip was 37 

made on a weekday or on the weekend. 38 

A second ordered logit model was used to analyze the severity of braking events. In this model, 39 

trips without HBEs above 3 m/s2 were ignored. The remaining trips were grouped according to the hardest 40 

braking event experienced during the trip; Alternative 0, 3-4 m/s2; Alternative 1, 4-5 m/s2; and Alternative 41 

2, 5 m/s2 or greater. The same dependent variables were considered with the addition of instantaneous 42 

vehicle speed immediately before the HBE occurred. 43 

 44 

DATA DESCRIPTION 45 
This study made use of three primary data sources. GPS travel data was collected in Quebec City, Canada 46 

using the Mon Trajet application by Brisk Synergies (24). In total, approximately 5000 driver participants 47 

have logged nearly 50,000 trips using the application. However, the sample for this study contained 2413 48 

drivers and 12,724 individual trips during the period between April 28 and May 18, 2014. Over the 21 days 49 
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sampled, 19.7 million individual data points were logged, with observations available every 1-2 seconds 1 

during a trip. Crash data was obtained from the Ministry of Transportation Quebec for a five year period 2 

from 2006 to 2010. 9248 collisions identified across the 5-year period involved at least one vehicle. Map 3 

data used for the environment-centric analysis was obtained from OpenStreetMaps in order to maintain 4 

consistency with the map matching results. 5 

 6 

RESULTS 7 
 8 

Extraction of Surrogate Indicators 9 
TABLE 1 provides the number of HBEs identified for each combination of deceleration threshold and 10 

smoothing parameter. Both of these variables were observed to greatly influence the total number of HBEs 11 

that were identified. In the most restrictive case, only 1444 events were extracted, while the least restrictive 12 

case found nearly 80,000 events. 13 

TABLE 1  Number of Hard Braking Events Identified 14 

    Alpha 

    0.8 0.6 0.4 

T
h

re
sh

o
ld

 

3 m/s2 78457 43119 13870 

4 m/s2 21744 9356 2719 

5 m/s2 6958 3021 1444 

 15 

Environment-Centric Analysis 16 

 17 
Spearman Rank Correlation 18 

Spearman’s rho was calculated for three different deceleration thresholds, with three different smoothing 19 

parameters, and three different buffer sizes, for a total of 27 tests. The results are presented in TABLE 2. 20 

Smoothing parameters of 0.6 and 0.8 were found to provide roughly equivalent results, only differing by a 21 

few percentage points. An alpha value of 0.4 was inferior in all test cases (as were alpha values less than 22 

0.4). Although a higher alpha value results in improved correlation, reducing the alpha value significantly 23 

reduces the number of events identified (as shown in TABLE 1), with only a minor reduction in correlation 24 

strength. In this case, an alpha value of 0.6 provides good correlation with far fewer observations than an 25 

alpha of 0.8. All cases with 100 m buffers failed to provide correlation above 0.50. A 200 m buffer 26 

performed better, with correlations between 0.50 and 0.60, and the 500 m provided the best results, with 27 

correlations between 0.60 and 0.70. A deceleration of threshold of 3 m/s2 consistently provided the highest 28 

correlation, up to 0.669. For these reasons, the remainder of this paper focusses on a threshold of 3 m/s2, 29 

alpha of 0.6, and a buffer size of 500 m (rho = 0.644). 30 

 31 

Hot Spot Analysis 32 

Despite relatively high correlation results, Spearman’s rho provides no indication of where correlation is 33 

good and where it is poor. In order to identify differences in the data sets, hot spots were identified for both 34 

collisions, in FIGURE 4a, and HBEs, in FIGURE 4b. Visually, these maps reveal a critical difference 35 

between the crash data and the surrogate safety measures. The locations with the most collisions tend to be 36 

local streets, such as in downtown Quebec City, or on urban arterials like Laurier Boulevard and 1st Avenue. 37 

In contrast, the locations with the most HBEs tend to be on highways, such as Félix-Leclerc, Henry IV, and 38 

Charest. This is perhaps logical, as a deceleration of 3 m/s2 is more likely when a driver is traveling at 39 

highway speeds compared to urban arterials and local streets. This is a crucial discrepancy, as priority sites 40 

identified through network screening would be very different if using HBEs rather than collision data. 41 
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TABLE 2  Spearman Rank Correlation Coefficients 1 

    Buffer Size 

  100 m 200 m 500 m 

Alpha = 0.8       

     

T
h

re
sh

o
ld

 

3 m/s2 0.497 0.564 0.669 

4 m/s2 0.453 0.522 0.639 

5 m/s2 0.386 0.474 0.610 

     

Alpha = 0.6       

     
T

h
re

sh
o

ld
 

3 m/s2 0.477 0.540 0.644 

4 m/s2 0.399 0.479 0.603 

5 m/s2 0.278 0.360 0.543 

     

Alpha = 0.4       

     

T
h

re
sh

o
ld

 

3 m/s2 0.408 0.465 0.580 

4 m/s2 0.244 0.321 0.500 

5 m/s2 0.129 0.171 0.341 

          
 2 

Considering a correlation exceeding 0.644 was observed despite the disparity in the locations of 3 

the hot spots, it was believed that disaggregating facility types may improve the results. Consider the plot 4 

of collisions and HBEs provided in FIGURE 3. Locations with many more HBEs than collisions are likely 5 

to be highways (those that appear as hotspots in FIGURE 4b), while locations with more collisions are 6 

likely to be local or arterial streets (those that appear as hotspots in FIGURE 4a). 7 

 8 
FIGURE 3  Correlation between number of hard braking events and crashes  9 
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  1 
 2 

(a) 3 
 4 

  5 
 6 

(b) 7 

FIGURE 4  Hot spot analysis by collision data (a) and hard braking events (b) 8 
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 Comparing the lists of intersections ranked by collision occurrence and HBEs, the top 1 % 1 

identified using crash data shared no common sites with the and the top 1 % identified using HBEs. The 2 

top 5 % in both lists contained only 64 intersections in common out of 778 total (8 % similarity), and the 3 

top 25 % in both lists contained 999 intersections in common out of 3889 total (26 % similarity). With the 4 

results presented above and the apparent bimodal nature of the surrogate/crash relationship, a final attempt 5 

to improve the correlation results was made by separating highways from the local and arterial streets, and 6 

performing a separate correlation for each facility group. Intersections, collisions, and HBEs were filtered 7 

according to those corresponding to highways or highway ramps, and those occurring on all other facilities. 8 

TABLE 3 shows the new rho values based on facility type. Although the correlation for highways was 9 

lower than for all facility types combined, the correlation on local and arterial streets was improved, and an 10 

average weighted on proportion of facility type demonstrated an overall increase in correlation. However, 11 

as the total improvement in correlation was only two percentage points, this result demonstrates that 12 

although the relationship between HBEs and collision occurrence is dependent on facility type, more facility 13 

types must be considered if substantial improvements are to be made. 14 

TABLE 3  Spearman Rank Correlation Coefficient for Highways and Local/Arterials   15 

  Roadway Type 

  All Local/Arterial Highway Weighted 

ρ 0.644 0.674 0.536 0.664 

 16 

User-Centric Analysis 17 
The results for the braking occurrence model (which included all trips) and the braking severity model 18 

(which included only those trips with at least on HBE exceeding 3 m/s2) are presented in TABLE 4. The 19 

model results contain only parameters significant at 95% confidence unless otherwise noted.  20 

TABLE 4  Model Results for Occurrence and Severity of Hard Braking Events 21 

  Braking Occurrence Braking Severity 

Explanatory variables Parameter z stat Parameter z stat 

     
     Instantaneous Speed N/A N/A 0.0847 22.9 

     Trip Speed -0.0046* -1.52* - - 

     Trip Length - - - - 

     AM Peak 0.0996 2.71 - - 

     PM Peak 0.1655 4.19 0.0956 2.48 

     Night - - - - 

     Weekday - - - - 

     
   
     Tau 1 -0.2947 1.4784 

     Tau 2 N/A 3.0387 

   
   
Number of cases 20840 12087 

Log likelihood at convergence -14167.40 -11090.47 

Log likelihood for constants- 

only model 
-14177.35 -11356.39 

   
*note: coefficient for trip speed is significant at 87% confidence  

 22 
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In the braking occurrence model, only the AM and PM peak period variables were found to be 1 

statistically significant. This indicates that HBEs are more common during peak periods then during other 2 

periods in the day. This result is expected as the congestion experienced in these times should contribute to 3 

increased braking and, therefore, to increased collisions. Trip length was found to have no effect on braking 4 

occurrence, while average trip speed had a negative effect, though it was only significant at 87% confidence. 5 

Other time-of-day variables also failed to show a significant relationship with braking occurrence. In the 6 

braking severity model, the PM peak period variable was again found to be significant and positive. This 7 

indicates that not only do more HBEs occur in the PM peak period, but that they tend to be more severe 8 

(harder braking) than at other times of the day. Additionally, the instantaneous vehicle speed was found to 9 

be positive and significant. Faster vehicles who use braking as an evasive manoeuver tend to brake more 10 

aggressively or severely (i.e. have a higher deceleration rate). This result is again intuitive, as it is expected 11 

that travel at higher speeds would require more severe evasive actions, and potentially more severe 12 

collisions. 13 

 14 

CONCLUSIONS 15 
The purpose of this study was to extract surrogate safety measures from the smartphone-collected GPS-16 

data of regular drivers and to analyze those measures from both an environment-centric and user-centric 17 

perspective. The smoothing parameter and deceleration threshold have a strong influence the number of 18 

HBEs identified. However, buffer size has a much greater influence on the strength of the correlation to 19 

actual collision occurrence. Selecting these three parameters is a crucial step in the presented analysis. The 20 

strongest correlation between HBEs and collisions was 0.669 (threshold = 3 m/s2, alpha = 0.8, buffer = 500 21 

m) though reducing alpha to 0.6 only decreased correlation to 0.644 with far fewer observations. This is a 22 

promising result in this early research, as even the most aggregate approach to using HBEs as surrogate 23 

safety measures demonstrated a relatively high correlation. 24 

Despite strong correlation, hot spots identified by both methods vary greatly. HBEs tend to 25 

overestimate risk on highway facilities and underestimate risk on local and arterial. There are several 26 

potential explanations for the disagreement. First, regardless of the sample drivers used, it is more likely 27 

that their trips will utilize highway facilities, while the probability of trips in residential neighbourhoods is 28 

low (except for the neighbourhoods were sample drivers live). Therefore, the sample of smartphone GPS 29 

data collected from regular drivers likely over-represents travel (and therefore collision risk) on highways 30 

and underrepresents travel (and risk) on urban residential streets. Disaggregating analysis by facility type 31 

showed potential for improvement, although the analysis must consider more than two facility types if 32 

improvements are to be substantial. Therefore, facility types should be disaggregated before analyses 33 

begins. Second, the use of a constant deceleration threshold is likely biased towards facilities with higher 34 

mean travel speeds. A deceleration rate of 3 m/s2 is more probable when traveling at highway speeds 35 

compared to urban arterials and local streets. A lower deceleration rate of 2 m/s2 may be common on 36 

highways but accurately represents evasive manoeuvers on local streets. If facility types are disaggregated, 37 

then the deceleration threshold could be set according to each specific facility type. Thirdly, hard 38 

decelerations may not be the primary evasive manoeuvre in the local and arterial streets. Other surrogate 39 

indicators should be used to capture more evasive manoeuvers in urban environments. 40 

The user-centric analysis showed that more HBEs occur during the AM and PM peak periods, and 41 

that braking in PM peak period tends to be more severe. This result is logical as more congestion in these 42 

periods should yield more braking and more collisions. However, more congestion may also lead to reduced 43 

speed and therefore less severe collisions. This potential contradiction should be explored in future work. 44 

As vehicle speed increases, the severity of braking also increases. Intuitively, faster vehicles must decelerate 45 

more rapidly to avoid collisions. Although other spatio-temporal driving behaviours could not be linked to 46 

occurrence of braking events, the limited observations demonstrate that surrogate measures defined using 47 

braking as the primary evasive manoeuvre are not only spatially correlated with actual collision occurrence, 48 

but also make sense intuitively with respect to the behaviours that are related to collision occurrence and 49 

severity (traveling at peak periods and at higher speeds).  50 
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Limitations of this study include the use of density-based measures (heat maps). Future work should 1 

focus directly on links and/or intersections as the unit of analysis. The lack of supplemental data from 2 

accelerometers may be perceived as a limitation, though using only GPS data may be a strength of this 3 

approach, as it results in much less data that requires processing and collecting only GPS data from 4 

smartphones limits the battery requirements of the application. Additionally, correlations between HBEs 5 

and collisions was high even without this additional data. In the future, more work is needed to determine 6 

if surrogate indicators, such as over speeding or speed variation, more closely correlated with collision 7 

occurrence can be extracted from the GPS data. Additionally, further disaggregating the analyses by facility 8 

type should improve the results. Correlation at the link-level should be considered in addition to the 9 

intersection-level analysis presented above. In order to increase correlation with collision data (to use for 10 

network screening purposes), analysis could be done according to facility type (highway, primary, 11 

secondary, tertiary, local, etc.), and the threshold, smoothing parameter, and buffer size could be adjusted 12 

for each. Regardless of future improvements, hard braking events derived from the smartphone-collected 13 

GPS data of regular drivers show promising potential in the field of surrogate safety. 14 

 15 

ACKNOWLEDGEMENT 16 
Funding for this project was provided in part by the Natural Sciences and Engineering Research Council. 17 

The authors recognize Charles Chung, CEO of Brisk Synergies, for his assistance in data preparation and 18 

processing.  19 



Stipancic, Miranda-Moreno, Saunier 14 

REFERENCES 1 

1. Ellison, A. B., S. Greaves, and M. Bliemer. Examining Heterogeneity of Driver Behavior with 

Temporal and Spatial Factors. Transportation Research Record, no. 2386, 2013, pp. 158-157. 

2. Algerholm, N., and H. Lahrmann. Identification of Hazardous Road Locations on the basis of 

Floating Car Data. Road safety in a globalised and more sustainable world, 2012. 

3. Lee, C., B. Hellinga, and K. Ozbay. Quantifying effects of ramp metering on freeway safety. 

Accident Anaysis and Prevention, no. 38, 2006, pp. 279-288. 

4. Kockelman, K. M., and Y.-J. Kweon. Driver injury severity: an application of ordered probit models. 

Accident Analysis and Prevention, Vol. 34, 2002, pp. 313-321. 

5. Bagdadi, O. Assessing safety critical braking events in naturalistic driving studies. Transportation 

Research Part F, no. 16, pp. 117-126. 

6. Wu, K.-F., and P. P. Jovanis. Defining and screening crash surrogate events using naturalistic driving 

data. Accident Analysis and Prevention, no. 61, 2013, pp. 10-22. 

7. Tarko, A., G. Davis, N. Saunier, T. Sayed, and S. Washington. Surrogate Measures of Safety. 

Transportation Research Board, 2009. 

8. Laureshyn, A., K. Astrom, and K. Brundell-Freij. From Speed Profile Data to Analysis of Behaviour. 

IATSS Research, Vol. 33, no. 2, 2009, pp. 88-98. 

9. Bahler, S. J., J. M. Kranig, and E. D. Minge. Field Test of Nonintrusive Traffic Detection 

Technologies. Transportation Research Record, no. 1643, 1998, pp. 161-170. 

10. Oh, C., J.-s. Oh, and S. G. Ritchie. Real-time estimation of Freeway Accident Likelihood. in 

Transportation Research Board Annual Meeting, Washington, D.C., 2001. 

11. Golob, T. F., W. W. Recker, and V. M. Alvarez. Freeway safety as a function of traffic flow. 

Accident Analysis and Prevention, no. 36, 2004, pp. 933-946. 

12. Lee, C., F. Saccomanno, and B. Hellinga. Analysis of Crash Precursors on Instrumented Freeways. 

Transportation Research Record: Journal of the Transportation Research Board, no. 1784, 2002, 

pp. 1-8. 

13. Herrera, J. C., D. B. Work, R. Herring, X. Ban, Q. Jacobson, and A. M. Bayen. Evaluation of traffic 

data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation 

Research Part C, no. 18, 2010, pp. 568-583. 

14. El Faouzi, N.-E., H. Leung, and A. Kurian. Data fusion in intelligent transportation systems: 

Progress and challenges – A survey. Information Fusion, no. 12, 2011, pp. 4-19. 

15. Jun, J., J. Ogle, and R. Guensler. Relationships between Crash Involvement and Temporal-Spatial 

Driving Behavior Activity Patterns Using GPS Instrumented Vehicle Data. in Transportation 

Research Board Annual Meeting, Washington, DC, 2007. 

16. Dia, H., and K. Thomas. Development and evaluation of arterial incident detection models using 

fusion of simulated probe vehicle and loop detector data. Information Fusion, no. 12, 2011, pp. 20-

27. 

17. Sethi, V., N. Bhandari, F. S. Koppelman, and J. L. Schofer. Arterial Incident Detection using Fixed 

Detector and Probe Vehicle Data. Transportation Research Part C, Vol. 3, no. 2, 1995, pp. 99-112. 



Stipancic, Miranda-Moreno, Saunier 15 

18. Shen, W., and L. Wynter. Real-Time Road Traffic Fusion and Prediction with GPS and Fixed-Sensor 

Data. in 15th International Conference on Information Fusion, Singapore, 2012, pp. 1468-1475. 

19. Fazeen, M., B. Gozick, R. Dantu, M. Bhukhiya, and M. C. Gonzalez. Safe Driving Using Mobile 

Phones. IEEE Transactions on Intelligent Transportation Systems, Vol. 13, no. 3, 2012, pp. 1462-

1468. 

20. Ellison, A. B., S. P. Greaves, and M. C. Bliemer. Driver behaviour profiles for road safety analysis. 

Accident Analysis and Prevention, no. 76, 2015, pp. 118-132. 

21. Dingus, T. A., S. G. Klauer, V. L. Neale, A. Petersen, S. E. Lee, J. Sudweeks, M. A. Perez, J. 

Hankey, D. Ramsey, S. Gupta, C. Bucher, Z. R. Doerzaph, J. Jermeland, and R. R. Knipling. The 

100-Car Naturalistic Driving Study, Phase II – Results of the 100-Car Field Experiment. NHTSA, 

Washington, DC, DOT HS 810 593, 2006. 

22. City of Quebec. Mon Trajet. City of Quebec, http://www.ville.quebec.qc.ca/citoyens/deplacements/

mon_trajet.aspx. Accessed May 13, 2015. 

23. Miranda-Moreno, L. F., C. Chung, D. Amyot, and H. Chapon. A system for collecting and mapping 

traffic congestion in a network using GPS smartphones from regular drivers. in Transportation 

Research Board Conference Processings, Washington, DC, 2014. 

24. Brisk Synergies. Brisk Synergies, http://www.brisksynergies.com/. Accessed July 22, 2015. 

25. Marchal, F. TrackMatching. 2015. https://mapmatching.3scale.net/. Accessed May 1, 2015. 

26. OpenStreetMap. About. OpenStreetMap, 2015. http://www.openstreetmap.org/about. Accessed May 

11, 2015. 

27. Rakha, H., F. Dion, and H.-G. Sin. Using Global Positioning System Data for Field Evaluation of 

Energy and Emission Impact of Traffic Flow Improvement Projects. Transportation Research 

Record, no. 1768, 2006, pp. 210-223. 

 1 


